摘要
Let{ψμ} be an orthonormal wavelet of L^2(R^d) and the support of a whole of its Fourier transform be Uμsupp{ψμ}=Пi=1^d[Ai, Di]-Пi=1^d(Bi, Ci), Ai≤Bi≤Ci≤Di. Under the weakest condition that each │ψμ│, is continuous for ω ∈ δ(Пi=1^d[Ai, Di]), a characterization of the above support of a whole is given.
Let{ψμ} be an orthonormal wavelet of L^2(R^d) and the support of a whole of its Fourier transform be Uμsupp{ψμ}=Пi=1^d[Ai, Di]-Пi=1^d(Bi, Ci), Ai≤Bi≤Ci≤Di. Under the weakest condition that each │ψμ│, is continuous for ω ∈ δ(Пi=1^d[Ai, Di]), a characterization of the above support of a whole is given.