摘要
Let G be a graph (i.e., a finite one-dimensional polyhedron) and f : G → G be a continuous map. In this paper, we show that every isolated recurrent point of f is an isolated non-wandering point; every accumulation point of the set of non-wandering points of f with infinite orbit is a two-order accumulation point of the set of recurrent points of f; the derived set of an ω-limit set of f is equal to the derived set of an the set of recurrent points of f; and the two-order derived set of non-wandering set of f is equal to the two-order derived set of the set of recurrent points of f.
Let G be a graph (i.e., a finite one-dimensional polyhedron) and f : G → G be a continuous map. In this paper, we show that every isolated recurrent point of f is an isolated non-wandering point; every accumulation point of the set of non-wandering points of f with infinite orbit is a two-order accumulation point of the set of recurrent points of f; the derived set of an ω-limit set of f is equal to the derived set of an the set of recurrent points of f; and the two-order derived set of non-wandering set of f is equal to the two-order derived set of the set of recurrent points of f.
基金
NSF of the Committee of Education of Jiangshu Province of China (02KJB110008)
supported by NNSF of China(19961001)
the Support Program for 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions