期刊文献+

不确定仿射非线性系统H_∞鲁棒混杂控制 被引量:1

H_∞ Robust Hybrid Control for Uncertain Affine Nonlinear Systems
下载PDF
导出
摘要 针对受内部及外部扰动影响的仿射非线性系统,使用切换技术及多Lyapunov函数方法构造出不连续状态反馈控制器,同时设计切换律,使得对于所有允许的不确定性,相应的闭环系统渐近稳定又具有指定的L2增益.主要条件以一组偏微分不等方程给出,其中纯量函数的引入使得不等式组比通常的Hamilton-Jacobi不等式更具有可解性.该方法将一般系统的H∞控制问题转化成了某个切换系统的H∞控制问题.这种混杂状态反馈控制方法对系统参数变化具有很强的鲁棒性. For an affine nonlinear system affected by internal and external disturbances, the discontinuous state feedback controllers are built by using switching technique and multiple Lyapunov function method with switching laws designed to ensure that for all allowable uncertainties the relevant closed-loop system pcssesses the prescribed L2-gain and is asymptotically stable. The main condition is given in form of a group of partial differential inequalities, among which the inequalities are more solvable than a general Hamilton-Jacobi inequality after introducing the scaler functions. This method fransforms the H∞ control problem of general systems into that of a certain switched system and has strong robustness for the variation of system parameters.
作者 赵胜芝 赵军
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第9期821-823,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60274009) 高等学校博士学科点专项科研基金资助项目(20020145007) 辽宁省自然科学基金资助项目(20032020)
关键词 切换系统 多LYAPUNOV函数 H∞控制 L2增益 混杂状态反馈 switched systems multiple Lyapunov functions H∞ control L2-gain hybrid state feedback
  • 相关文献

参考文献9

  • 1Xie L, De muza C. Robust Ha control for linear systems with norm-bounded time-varying uncertainty [J ]. IEEE Trans Automat Contr, 1992,37(8) : 1188 - 1191.
  • 2Shen T, Zang H, Tamura K. Riccati equation approach to robust L2 gain synthesis for a class of uncertain nonlinear systems[J]. Int Journal Contr, 1996,64(6) : 1177 - 1188.
  • 3Xie L, Su W. Robust H∞ control for a class of cascade nonlinear systems[J ]. IEEE Trans Automat Contr , 1997,42(10) : 1465 - 1469.
  • 4Nie H, Zhao J. Hybrid state feedback H∞ robust control for a class of linear systems with time-varying norm-bound eduncertainty [ A ]. Proc Arner Contr Conf [ C ]. Denver:Omnipress, 2003. 3608 - 3613.
  • 5Liu Y, Yu H. Stability of networked control systems based on switched technique [A]. Proc of the 42nd IEEE Conf Decision Contr[C]. Hawaii: IEEE,2003. 1110- 1113.
  • 6Liberzon D. Switching in systems and control [M]. Boston,2003.31 - 45.
  • 7Cheng D, Guo L, Huang J. On quadratic Lyapunov functions[J]. IEEE Trans Automat Control, 2003, 48 (5) : 885 -890.
  • 8Zhao S, Zhao J. Global stabilization of a class of cascade switched nonlinear systems [ A ]. Proc of the 43^rd Conf Decision Contr[C]. Atlantic: IEEE, 2004.2817-2821.
  • 9Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [ J ]. IEEE Trans Automat Contr, 1998,43(4) :475 - 482.

同被引文献13

  • 1ZHAOSheng-Zhi:,ZHAOJun.Quadratic Stability of Switched Nonlinear Systems in Block-triangular Form[J].自动化学报,2005,31(4):631-633. 被引量:10
  • 2Liberzon D, Morse A S. Basic problems in stability and design of switched systems[J]. IEEE Control Systems Magazine, 1999,19(1):59-70.
  • 3Ji Z J, Wang L, Xie G. New results on the quadratic stabilization of switched linear systems[A]. Proceedings of the 42nd IEEE Conference on Decision and Control[C]. Hawaii, 2003.1657-1662.
  • 4Cheng D. Stabilization of planar switched systems[J]. Systems & Control Letters, 2004,51(1):79-88.
  • 5Zhai G, Hu B, Yasuda K, et al. Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach[J]. International Journal of Systems Science, 2001,32(8):1055-1061.
  • 6Zhao J, Dimirovski G M. Quadratic stability of a class of switched nonlinear systems[J]. IEEE Transactions on Automatic Control, 2004,49(4):574-578.
  • 7Liu P L, Su T J. Robust stability of interval time-delay systems with delay-dependence[J]. Systems & Control Letters, 1998,33:231-239.
  • 8Wang L, Huang L. Vertex results for uncertain systems[J]. Int J Systems Sci, 1994,26(3):541-549.
  • 9Chapellat H, Dahleh M, Bhattacharyya S P. Robust stability under structured and unstructured perturbations[J]. IEEE Trans Autom Control, 1990,35(10):1100-1108.
  • 10Barmish B R, Hollot C V, Kraus F F, et al. Extreme point results for robust stabilization of interval plants with first order compensators[J]. IEEE Trans Autom Control, 1992,37(6):707-714.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部