期刊文献+

非二元约束满足问题的E-GENET求解原理

Theory of Solving of E-GENET for Non-Binary Constraint Satisfaction Problems
下载PDF
导出
摘要 通过E-GENET的重定义,将非二元约束满足问题(NB-CSPs)转化为整数最小化问题,提出一类非二元变量约束关系的离散拉格朗日搜索模式(NB-LSDL)与算法,实现了基于NB-LSDL的E-GENET重构,为求解一般约束CSPs的最小冲突启发式修补方法提供新的理论依据,扩展了E-GENET处理问题的技术与手段.实验结果显示了方法的可行性与有效性. Non-binary constraint satisfaction problems (NB-CSPs) are transformed into the integer constrained minimization problems by extending correlative definitions of E-GENET. Then, a class of discrete Lagrangian-hased search scheme and algorithm with non-binary variable constraints (NB-LSDL) is proposed for such probllems to restructure E-GENET from NB- LSDL. It is useful to gain important insights into the heuristic repair method to minimize conflicts and improve variant of E- GENET for the CSPs with general constraints in a new theoretical perspective. The experimental results show that it is effective and feasible to re-extend E-GENET by using NB-LSDL.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第9期844-847,共4页 Journal of Northeastern University(Natural Science)
基金 国家杰出青年学者自然科学基金资助项目(70425003) 国家自然科学基金资助项目(70171030 60274049)
关键词 约束满足问题 E-GENET网 离散拉格朗日方法 启发式修补方法 constraint satisfaction problems E-GENET network discrete Lagrangian method heuristic repair method
  • 相关文献

参考文献9

  • 1Kumar V. Algorithrrks for constraint satisfaction problems: a survey[J ]. Artificial Intelligence Magazine, 1992, 13 ( 1 ) :32 - 44.
  • 2Minton S, Johnston M D, Philips A B, et al. Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems[J]. Artificial Intelligence, 1992,58:161 - 205.
  • 3Davenport A, Tsang E, Wang C J, et al. Genet: a connectionist architecture for solving constraint satisfaction problems by iterative improvement [ A l, 12th National Conference on Artificial Intelligence [ C ]. Seattle: AAAI Press, 1994. 325 - 330.
  • 4Choi K M F, Lee J H M, Stuckey P J. A Lagrangian reconstruction of GENET[J]. Artificial Intelligence, 2000,123:1 - 39.
  • 5Lee J H M, Leung H F, Won H W. Extending GENET for non-binary CSP's[ A]. 7 th IEEE International Conference on Tools with Artificial Intelligence [C]. Washington: IEEE Computer Society Press, 1995. 338 - 343.
  • 6Shang Y, Wah B W. A discrete Lagrangian-based global-search method for solving satisfiability problems[J]. Global Optimization, 1998, 12( 1 ) :61 - 100.
  • 7Garey M, Johnson D. Complexity results for multiprocessor scheduling under resource constraints[J]. SIAM Journal on Computing, 1975,4(4) :397 - 411.
  • 8Jain A S, Meeran S. Deterministic job shop scheduling: past,present and future [ J ]. European Journal of Operational Research, 1999,113:390-434.
  • 9Taillard E. Benchmarks for basic .scheduling problems [J ].European Journal of Operational Research, 1993,64:278-285.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部