摘要
研究了与常型Sturm-Liouville问题有密切联系的带有周期边界条件的Sturm-Liouville问题:Ly≡[-d2dx2+q(x)]y=λy,x∈[0,π],q(x)∈C2[0,π]y(0)=-y(π),y′(0)=-y′(π)得到了整函数ω(λ),并且证明了其零点集合与特征值集合重合,其零点重数与特征值的秩一致.
In the paper, an entire function ω(λ) are obtained for the following Sturm- Liouville problem with periodic boundary condition:(Ly=[-d^2/dx^2+q(x)]y=λy,x∈[0,π],q(x)∈C^2[0,π] y(0)=-y(π) y′(0)=-y′(π)),The paper proves that the zero set of ω(λ) concedents the set of eigenvalue, the rank of the eigenvalue equals the order of the zero.
出处
《商丘师范学院学报》
CAS
2005年第5期48-52,共5页
Journal of Shangqiu Normal University
关键词
特征值
特征函数
特征值的秩
eigenvalue
eigenvalue function
rank of eigenvalue