期刊文献+

斑块环境竞争系统的持久性和灭绝性

Permanence and Extinction in Nonautonomous Competitive System with Diffusion
下载PDF
导出
摘要 本文主要考虑扩散率对斑块环境中的竞争物种的持久性及灭绝性的影响。与以往研究不同的是,将出生率拓展为一般连续函数。考虑在某个孤立的斑块上,其中一个物种将灭绝的前提下,引入扩散后,两物种的最终状态。通过分析斑块环境竞争系统的生态模型,得到了两物种保持持久生存,及其中之一物种灭绝的条件。 We consider a competitive system in patchy enviroments, where one of the species will go extincting in an isolated patch. Our aim is to obtain the conditions under which the species become permanent or keep partial extinction for the corresponding dispersal system. Different from former studies, the growth rate of the species is extended to a general continuous function.
作者 郭明娜
出处 《工程数学学报》 CSCD 北大核心 2005年第5期875-884,共10页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10471066).
关键词 竞争系统 扩散 持久生存 灭绝 competitive system dispersal permanence extinction
  • 相关文献

参考文献14

  • 1Smith H L. Cooperative systems of differential equations with concave nonlinearities[J]. Non Anal,1986;10:1037-1052.
  • 2Tineo A. An iterative scheme for the N-competing spicies problem[J]. J Diff Equ, 1995;116:1-15.
  • 3Gopalsamy K. Exchange of equilibria in two species Lotka-Volterra competition models[J]. J Austral Math Soc Ser, 1982;24B:160-170.
  • 4Ahmad S. On the nonautonomous Volterra-Lotka competition equations[J]. Proc Amer Math Soc,1993;117:199-204.
  • 5Ahmad S, Lazer A C. On the nonautonomous N-competing species problems[J]. Applicable Anal,1995;57:209-323.
  • 6Ahmad S, Montes F de Oca. Extinction in nonautonomous T-periodic competitive Lotka-Volterra systems[J]. Appl Math Comput, 1998;90:155-156.
  • 7Alvarez C, Lazer A C. An application of topological degree to the periodic competitive species problem[J].J Austral Math Soc Ser, 1986;B28:202-219.
  • 8Montes de Oca F, Zeeman M L, Extinction in nonautonomous competitive Lotka-Volterra systems[J]. Proc Amer Math Soc, 1996;124:3677-3687.
  • 9Ahmad S. Extinction of Species in nonautonomous Lotka-Volterra systems[J]. Proc Amer Math Soc,1999;127:2905-2910.
  • 10Allen L J S. Pesistence and extinction in single-species reaction-diffusion models[J]. Bull Math Biol,1983;45:209-227.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部