期刊文献+

粗糙集和决策树方法在IDS中的应用研究 被引量:1

Research on Rough Set Theory and Decision Tree Method Applied to IDS
下载PDF
导出
摘要 入侵检测系统(IDS)是数据挖掘的一个热门应用领域。为了解决当前建立的入侵检测系统缺少有效性的问题,文中首先介绍入侵检测系统产生的背景和入侵检测系统的特点,分析决策树归纳学习的过程,从数据挖掘的角度,首先使用粗糙集进行属性约简,运用决策树学习方法对入侵检测数据进行归纳学习。从结果看出粗糙集和决策树学习方法在建立入侵检测系统上的有效性和实用性。 Intrusion detection system(IDS)is a hot application field. In order to solve the problem of lacking of validity on building IDS currently, first introduces the background of appearance of IDS and the character of IDS, analyses the process of decision tree learning. From the angle of data mining, reduces attributes of intrusion detection data with the method of rough set, and then learns the data with the method of decision tree. The result indicates the validity and practicability of rough set and decision tree on building IDS.
出处 《微机发展》 2005年第10期16-18,22,共4页 Microcomputer Development
基金 安徽省教育厅自然基金资助项目(2002kj009)
关键词 粗糙集 决策树 入侵检测 ID3算法 mugh set decision tree intrusion detection ID3 arithmetic
  • 相关文献

参考文献4

  • 1HanJiawei KamberM.Data Mining:Concepts and Techniques[M].北京:机械工业出版社,2000..
  • 2MitchellTM.Machine Learning[M].北京:机械工业出版社,1997..
  • 3UCI KDD Archive.KDD CUP 1999 data set[EB/OL].http:∥kdd.ics.uci.edu/databascs/kddcup99/kddcup99.html, 1999.
  • 4Laboratory of IDSS.Rough Set Data Explorer[EB/OL].http:∥www- idss.cs.put.poznan.pl/software/rose, 1999.

共引文献1

同被引文献10

  • 1王煜 ,王正欧 ,王明春 .基于粗集和决策树的Web文本分类规则抽取[J].情报学报,2005,24(6):674-678. 被引量:4
  • 2[2]Wenke Lee,Matthew Miller,Sal Stolfo,et al.Toward cost-sensitive modeling for intrusion detection.Computer Science,Columbia University,Tech Rep:CUCS-002-00,2000
  • 3[4]Srinivas Mukkamala,Andrew H Sung.Identifying significant features for network forensic analysis using artificial intelligent techniques.International Journal of Digital Evidence,2003,1(4):1-17
  • 4[7]Shaomin Wu,Peter Flach.Data mining on Thrombin dataset.Solomon European Network,Tech Rep,2001
  • 5[8]Ian I Witter,Eibe Frank.Data Mining:Practical Machine Learning Tools and Techniques.2nd Edition.San Francisco:Morgan Kaufmann,2005
  • 6[9]Richard Lippmann,Joshua W Haines,David J Fried,et al.The 1999 DARPA off-line intrusion detection evaluation.Computer Networks,2000,34(4):579-595
  • 7[10]J R Quinlan.C4.5:Programms for Machine Learning.San Francisco:Morgan Kaufmann,1993
  • 8[11]Shaomin Wu,Peter A Flach.Feature selection with labeled and unlabeled data.ECML/PKDD'02 Workshop on Integration and Collaboration Aspects of Data Mining,Decision Support and Meta-Learning,Helsinki,2002
  • 9田俊峰 傅玥.基于模糊积分的多决策树融合模型FIFDT的研究.计算机研究与发展,2005,:148-152.
  • 10文专,王正欧.一种高效的基于排序的RBF神经网络属性选择方法[J].计算机应用,2003,23(8):34-36. 被引量:8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部