摘要
采用线性组合Clipped方法得到初始的具有旋转不变性的WTA模型输入层与中间层间的二值互连权重,并利用局部MonteCarlo方法对权值进行优化以提高系统的正确识别率.以4类飞行目标进行了计算机模拟,实验结果表明此模型用于识别旋转目标是可行的.
The linear combination Clipped method was used to obtain an original binary interconnection weight between the input layer and the middle layer of the WTA neural network model.This interconnection weight makes the WTA model with the rotation invariance.To improve the rate of correct recognition of the system the Local Monte Carlo was used to obtain the optimum interconnection weight.A computer simulation was completed for four kinds of flyers. The results of the experiment demonstrated that the WTA model is suitable for recognizing the rotating objects. A hybrid electro optic system was presented to implement the WTA model.
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
1996年第4期241-244,共4页
Journal of Infrared and Millimeter Waves
基金
国家自然科学基金
关键词
WTA
神经网络模型
互连权重
WTA neural network model,interconnection weight,binary.