摘要
利用Kohonen侧抑制自组织神经网络算法和改进的增量算法,对三维多目标识别中的同一目标不同训练样本由单一编码改为多重编码,减轻了多层级联神经网络中第一级网络权重的学习负担,在不降低网络识别目标正确率的条件下。
The Kohonen self organized neural network and the improved increment algorithm were used in multi encoding to replace single encoding for different training sets of the same targets in 3 D multi target pattern recognition. It reduces the first layers learn intensity and learn time for multi layer cascaded network.The result of computer simulation indicated that the weights convergence speed can be improved in the condition that the recognition ratio of this neural network is not reduced.
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
1996年第4期262-266,共5页
Journal of Infrared and Millimeter Waves
基金
国家自然科学基金
攀登计划资助
关键词
多目标识别
多层级联网络
多重编码
模式识别
multi target recognition,multi layer cascaded neural network,multi encoding,convergence speed of weights.