期刊文献+

Newton-Leipnik系统的慢流形表达式 被引量:1

Slow manifold equation of Newton-Leipnik system
下载PDF
导出
摘要 讨论了Newton-Leipnik(N-L)系统的慢流形,利用两种不同的非标准分析方法,分别建立了N-L系统的慢流形方程.将慢流形局部地定义为正交于切丛系统的左快特征向量的平面,利用条件Tzλ1(X).X.=0,导出N-L系统的慢流形方程.并将慢流形看成由两个慢特征向量所生成的曲面,这两个慢特征向量对应J(X)的两个慢变变量特征值λ2(X)和λ3(X),得到N-L系统的慢流形方程.对其轨线的奇异性作了初步定性分析,描述了混沌吸引子的形成过程和系统相轨线动力学行为. Slow manifold of Newton-Leipnik ( N - L) system is discussed. With two different nonstandard methods, the slow manifold equation of the N - L system is established. Firstly, the slow manifold equation of the nonlinear chaotic dynamics system is obtained by considering that the slow manifold is locally defined by a plane orthogonal to the tangent system' s left fast eigenvector. With condition zλ1^T(X)·X = 0, the slow manifold equation of the N - L system is built. Secondly, another method consists of defining the slow manifold as the surface generated by the two slow eigenvectors associated with the two eigenvalues λ2 (X) and λ3 (X) of J(X) , and the slow manifold equation of the N -L system is obtained. Finally, the qualitative behavior and orbits of the system are analyzed. The forming process of the chaos attractor and the dynamic behavior of the system orbits are described.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第5期405-408,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10071033) 江苏省教育厅自然科学基金资助项目(03SJB790008)
关键词 混沌动力学 Newton—Leipnik系统 慢流形方程 轨线 特征向量 chaotic dynamics Newton-Leipnik system slow manifold equation orbit eigenvector
  • 相关文献

参考文献9

  • 1Lorenz E N. Deterministic nonperiodic flow[J]. J Atoms Sci, 1963, 20:130-141.
  • 2Chen G, Ueta, T. Yet anther chaotic attractor[J]. Int J of Bifurcation and Chaos, 1999, 9(3):1465-1466.
  • 3Lu J, Chen G, Zhang S. Dynamical analysis of a new chaotic attractor[J]. Int J of Bifurcation and Chaos, 2002, 12(5):10-12.
  • 4Lu Jinhu, Zhang Suochun. Controlling Chen's chaotic using backstepping design based on parameters identification[J]. Phys Lett,2001, A286:148-152.
  • 5Jones Sckrt. Geometric singular perturbation theory[J]. Lecture Notes in Math, 1994, 609:45-118.
  • 6Sofiane Ramdani, et al. Slow manifolds of some chaotic systems with applications to laser systems[J]. Int J of Bifurcation and Chaos, 2000, 10 (12):2729-2744.
  • 7Bruno Rossetto, et al. Slow-fast autonomous dynamical systems[J]. Int J of Bifurcation and Chaos, 1998, 8(11): 2135-2145.
  • 8王学弟,田立新,李医民.Newton-Leipnik系统的线性反馈控制与同步研究[J].江苏大学学报(自然科学版),2004,25(5):417-420. 被引量:9
  • 9赵志峰,田立新.充分非线性KdV-Burgers方程的最优控制[J].江苏大学学报(自然科学版),2005,26(2):140-143. 被引量:2

二级参考文献14

  • 1赵志峰,田立新,朱敏,王景峰.充分非线性Burgers方程的最优控制[J].江苏大学学报(自然科学版),2004,25(5):413-416. 被引量:1
  • 2WANG Xue-di, TIAN Li-xin. Tracing control of chaos for the coupled dynamos dynamical system [J]. Chaos,Solitons & Fractals, 2004,21 (4): 193 - 200.
  • 3Yu Y, Zhang S. Controllling uncertain Lusystem using back stepping design [J]. Chaos, Solitons & Fractals,2003, 15:897 - 902.
  • 4Liu F, Ren Y, Shan X, Qiu Z. A linearfeedback synchronization theorem for a class of chaotic systems[J]. Chaos, Solitons & Fractals, 2002,13(4):723-730.
  • 5YU Hong-jie, LIU Yan-zhu. Chaotic synchronization based on stability criterion of linear system [J]. Physics Letters A, 2003,314: 292 - 298.
  • 6ITO K,RAVINDRAN S S.A reduced-basis method for control problems governed by PDES[J].Control and Estimation of Distributed Parameter Systems,International Series of Numerical Mathematicas,1998,126:153-168.
  • 7ATWEIL J A,KING B B.Proper orthogonal decomposition for reduced basis feedback controller for parabolic equation[J].Mathematical and Modelling,2001,33:1-19.
  • 8HU Chang-bing,ROGER Temam.Robust control the Ku-ramoto-Sivashinsky equation[J].Dynamics of Continuous,Discrete and Impulsive Systems Series B:Application & Algorithms,2001,8:315-338.
  • 9BOSKOVIC P M,KRSTIC M,LIU W J.Boundary control of an unstable heat equation via measurement of domain-averaged temperature[J].IEEE Trans Automat Control,2001,46:2022-2028.
  • 10KUNISCH K,VOLKEIN S.Control of Burgers equation by a reduced-order approach using proper orthogonal decomposition[J].Journal of Optimalization Theory and Application,1999,102(2):345-371.

共引文献9

同被引文献10

  • 1王学弟,田立新,李医民.Newton-Leipnik系统的线性反馈控制与同步研究[J].江苏大学学报(自然科学版),2004,25(5):417-420. 被引量:9
  • 2宋运忠,赵光宙,齐冬莲.Passive control of chaotic system with multiple strange attractors[J].Chinese Physics B,2006,15(10):2266-2270. 被引量:4
  • 3LEIPNIK R B, NEWTON T A. Double strange attractors in rigid body motion with Linear feedback control [ J]. Physics Lettera A, 1981, 86 (2): 63 -67.
  • 4LOFARO T. A model of the dynamics of the Newton - Leipnik attractor [ J]. International Journal of Bifurcation and Chaos, 1997, 7 (12): 2723-2733.
  • 5MARLIN B A. Periodic orbits in the Newton - Leipnik system [ J]. International Journal of Bifurcation and Chaos, 2002, 12 (3): 511-523.
  • 6RICHTER H. Controlling chaotic systems with multiple strange attractors [ J]. Physics Letters A, 2002, 300:182 - 188.
  • 7WANG X D, TIAN L X. Bifurcation analysis and linear control of the Newton - Leipnik system [J]. Chaos, Solitons and Fractals, 2006, 27: 31-38.
  • 8WOLF A, SWIFT J B, SWINNEY H L et al. Detei:mining Lyapun0v exponents from a time series [ J]. Physica D, 1985, 16 (3): 285-317.
  • 9KAPLAN J L, YORK J A. Preturbulence: A regime observed in a fluid flow model of Lorenz [ J]. Communications in Mathematical Physics, 1979, 67 (2:) : 93 - 108.
  • 10陈关荣.控制动力系统的分岔现象[J].控制理论与应用,2001,18(2):153-159. 被引量:21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部