期刊文献+

不同系统之间的同步问题 被引量:1

Synchronization between different systems
下载PDF
导出
摘要 提出了通过两种不同方法来讨论不同混沌系统之间的同步问题——active控制同步法和非线性控制同步法,并且各自设计了两个不同的控制器,使得响应系统和驱动系统同步.与传统的混沌同步方法相比较,提出的这两个方法不需要计算条件Lyapunov指数,因此比较简单、有效,并以Rucklidge系统和Hadley循环系统为例加以说明.通过数值模拟证实了所提出的两种方法的有效性,而且这两个控制器对于一般的混沌系统也是适用的. Two different methods active control synchronization method and nonlinear control synchronization method are presented to study the synchronization of the different chaotic systems. Two different controllers are designed for synchronizing response system and drive system. Compared with traditional approaches, the proposed methods are much simpler and effective, because the Lyapunov exponents are not required to calculate. Rucklidge attractor system and Hadley circulation system are treated as examples. These two methods are applicable for general chaotic systems.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第5期409-412,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10071033)
关键词 混沌系统 同步 active控制 非线性控制 chaotic system synchronization active control nonlinear control
  • 相关文献

参考文献10

  • 1丁丹平,田立新.利用Lyapunov指数的混沌控制及控制参数选择[J].江苏理工大学学报(自然科学版),2000,21(1):87-91. 被引量:4
  • 2王学弟,田立新,许刚.基于参数识别应用Backstepping design控制Lü′s混沌吸引子[J].江苏大学学报(自然科学版),2003,24(2):83-86. 被引量:7
  • 3Pecora L M,Carroll T L. Synchronization in chaotic systems[J].Phys Rev Lett,1990,64:821-824.
  • 4Wang Xue-di, Tian Li-xin.Tracing control of chaos for the coupled dynamos dynamical system[J].Chaos,Solitons & Fractals, 2004,21:193-200.
  • 5孙梅,田立新.一种新的混沌系统的逆最优控制[J].江苏大学学报(自然科学版),2004,25(6):513-516. 被引量:4
  • 6Chen S,Lv J. Parameters identification and synchronization of chaotic systems based upon adaptive control [J]. Phys Lett A,2002, 299:353-358.
  • 7Huang L, Feng R,Wang M. Synchronization of chaotic systems via nonlinear control[J]. Phys Lett A, 2004,320:271-275.
  • 8Liao T L. Adaptive synchronization of two Lorenz systems[J]. Chaos,Solitons & Fractals, 1998,9(9):1555-1561.
  • 9Yassen M T. Aapative control and synchronization of a modified Chua's circuit system[J].Appl Math Comput,2001,135(1):113-128.
  • 10Tan X, Zhang J, Yang Y. Synchronizing chaotic systems using backstepping design [J].Chaos,Solitons & Fractals,2003,16:37-45.

二级参考文献12

  • 1张正娣,田立新.Chua’s系统的追踪控制与同步[J].江苏大学学报(自然科学版),2003,24(6):9-12. 被引量:13
  • 2方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展,1996,16(1):1-74. 被引量:137
  • 3Pyrages K. Continuous control of chaos by self-controlling feedback[J]. Physlett A, 1992,170:421-428.
  • 4Chen G, Dong X. From Chaos to Order Perspectives, Me- thodologies and Application[M]. Singapore:World Scientific, 1998.
  • 5Chen G. Controlling Chaos and Bifurcations in Engineering Systems[M]. Boca Raton FL:CRC Press,2000.
  • 6Chen G, Dong X. On feedback control of chaotic continuous-time system[J]. IEEE Trans CAS, Part I, 1993, 40(10):591-601.
  • 7Sanchez E N, Perez J P, Martinez M, Chen G. Chaos stabilization: an inverse optimal control approach [J].Latin Amer Appl Res: Int J, 2002,32:111-114.
  • 8Liu W, Chen G. A new chaotic system and its generation[J]. Int J Bifurcation and chaos, 2003,13(1):261-267.
  • 9Vanecek A, Celikovsky S. Control Systems: From Line-ar Analysis to Synthesis of Chaos[M]. London: Prentice-Hall,1996.
  • 10杨凌,刘曾荣.OGY方法的改进及证明[J].应用数学和力学,1998,19(1):1-7. 被引量:24

共引文献12

同被引文献4

  • 1王学弟,田立新,李医民.Newton-Leipnik系统的线性反馈控制与同步研究[J].江苏大学学报(自然科学版),2004,25(5):417-420. 被引量:9
  • 2Ju H Park.Adaptive synchronization of hyperchaotic Chen system with uncertain parameters[J].Chaos,Solitons and Fractals,2005,26:959-964.
  • 3Li Y,Tang W,Chen G.Generating hyperchaos via state feedback control[J].Inter J Bifurcation and Chaos,2004,14(8):1561-1570.
  • 4Jang Ming-jyi,Chen Chieh-li,Chen Chao-kuang.Sliding mode control hyperchaos in Rssler systems[J].Chaos,Solitons and Fractals,2002(14):1465-1476.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部