摘要
讨论了非线性波动方程(2t-Δx)uε+F(εα|tuε|p-1tuε)=0,(t,x)∈[0,T]×R3,uε|t=0=εU0r,r-r0ε,tuε|t=0=U1r,r-r0ε。当p>2,α=p-2时解在穿过焦点(r0,0)后的性态,其中F1在上是一致Lipschitz的。通过变量变换,将问题转化为讨论无穷远处的解,引入一个关键函数讨论脉冲波穿过焦点后(t→+∞)的性态。
We discuss the behavior of the solution to the wave equation{(δt^2-△x)u^∈+F(∈^a|δtu^∈|^p-1δtu^∈)=0,(t,x)∈[0,T]×R^3,u^∈|t=0=εU0(r,r-r0/ε),δtu∈|t=0=U1(r,r-r0/ε) after the focus (r0,0) ,where p 〉 2,α = p -2 and F is uniformly Lipschitiz on R. By introducing some changes of variables, the problem becomes one that we discuss the solution of a system at infinity, and study the behavior of pulses after the focus by introducing a key function.
出处
《石河子大学学报(自然科学版)》
CAS
2005年第3期288-291,共4页
Journal of Shihezi University(Natural Science)
基金
自然科学基金项目(10131050)