期刊文献+

球形脉冲在焦点的散射研究(Ι) 被引量:2

A Study of Scattering for Sphereical Pulses at Focus(I)
下载PDF
导出
摘要 讨论了非线性波动方程(2t-Δx)uε+F(εα|tuε|p-1tuε)=0,(t,x)∈[0,T]×R3,uε|t=0=εU0r,r-r0ε,tuε|t=0=U1r,r-r0ε。当p>2,α=p-2时解在穿过焦点(r0,0)后的性态,其中F1在上是一致Lipschitz的。通过变量变换,将问题转化为讨论无穷远处的解,引入一个关键函数讨论脉冲波穿过焦点后(t→+∞)的性态。 We discuss the behavior of the solution to the wave equation{(δt^2-△x)u^∈+F(∈^a|δtu^∈|^p-1δtu^∈)=0,(t,x)∈[0,T]×R^3,u^∈|t=0=εU0(r,r-r0/ε),δtu∈|t=0=U1(r,r-r0/ε) after the focus (r0,0) ,where p 〉 2,α = p -2 and F is uniformly Lipschitiz on R. By introducing some changes of variables, the problem becomes one that we discuss the solution of a system at infinity, and study the behavior of pulses after the focus by introducing a key function.
出处 《石河子大学学报(自然科学版)》 CAS 2005年第3期288-291,共4页 Journal of Shihezi University(Natural Science)
基金 自然科学基金项目(10131050)
关键词 一致Lipschitiz 球形对称 焦点 有界 特征线 uniformly Lipschitz spherical symmetry focus boundedness characteristics
  • 相关文献

参考文献3

二级参考文献14

  • 1Caries R, Rauch J. Focusing of spherical nonlinear pulses in R^1+2 [J]. Proc Amer Math Soc, 2002, 130 (3) : 791-804 (electronic).
  • 2Caries R, Rauch J. Focusing of spherical nonlinear pulses in R^1+3 (Ⅱ) Nonlinear caustic [J]. Revista Matematica Ieroamericana, 2004, 20 (2) : to appear.
  • 3Caries R, Rauch J. Absorption d'imopulsions non linéaires radiales focalisantes dans R^1+3 [J]. C R. Acad Sci Paris Sér I Math, 2001, 332 ( 11 ) : 985-990.
  • 4Rauch J, Keel M. Lectures on gemetric optics [A]. Hyperbolic equations and frequency interactions [C] (ParkCity, UT1995), 383-466, IAS/Park City Math Ser 5, Amer Math Soc Providence, RI, 1999.
  • 5Alterman D, Rauch J. Nonlinear geometric optics for short pulses [J]. Journal of Differential Equations, 2002, 178 (2) : 437-465.
  • 6Carles R,Rauch J.Focusing of spherical nonlinear pulses in R1+3[J].Proc Amer Math,Soc,2002,130(3):791-804(electronic).
  • 7R.Carles and J.Rauch,Absorption d' imopulsions non lineaires radiales focalisantes dans R1+3 [J].C.R.Acad.Sci.Paris,Ser.I Math,2001,332(11) :985-990.
  • 8Rauch J,Keel M.Lectures on gemetric optics,In Hyperbolic equations and frequency interactions [R].(ParkCity,UT 1995 ),383-466,IAS-Park City Math.Ser.5 ,Amer.Math.Soc.Providence,RI,1999.
  • 9Palrick Gerard.Oscillations and Concentration Effects in Semilinear Dispersive Wave Equations[J].Journal of Eunctional Analysis,1996,141 :60-98.
  • 10Caries R, Rauch J. Focusing of spherical nonlinear pulses in[J]. Proc Amer Math Sco,2002,130(3) : 791-804.

共引文献3

同被引文献8

  • 1袁明生,潘晓春,陆宏炯.R^(1+3)中球形非线性脉冲的全局存在性[J].河北工业大学学报,2005,34(1):98-103. 被引量:2
  • 2袁明生,潘晓春.R^(1+3)中球形非线性脉冲的聚焦分析[J].石河子大学学报(自然科学版),2005,23(1):107-110. 被引量:2
  • 3Alterman D, Rauch J. Diffractive nonlinear geometric optics for short pulses[J]. SIAM J Math Anal, 2003, 34: 1477-1502.
  • 4Alterman D, Rauch J. Nonlinear geometric optics for short pulses[J]. J Diff Eq, 2002, 178(2): 437-465.
  • 5Caries R, Raueh J. Focusing of spherical nonlinear pulses in R^1+3[J]. Proc Amer Math Soc, 2002, 130(2): 791- 804.
  • 6Caries R, Rauch J. Focusing of spherical nonlinear pulses in R^1+3[J]. Ⅱ. Nonlinear caustic, Rev Mat Iberoamericana, 2004, 20: 815-864.
  • 7Caries R, Rauch J. Focusing of spherical nonlinear pulses in R^1+3[J]. Ⅲ. Sub and Supercritical Cases, Tohoku Math J, 2004, 56(2): 393-410.
  • 8Carles,Rauch J.Focusing of spherical nonlinear pulses in R1+3,Ⅱ.Nonlinear caustic[J].Rev Mat Iberoamericana,2004,20:815-864.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部