摘要
将小波神经网络引入时变参数信号模型中,提出一个基于小波神经网络的时变参数信号模型。使用该信号模型对非平稳的反电晕放电信号建模,通过模型参数提取信号的特征,根据提取的特征判别反电晕放电现象是否发生。对实际信号的建模实验结果表明,该参数信号模型在放电信号建模方面具有优良的性能,特别是在区分正常放电与反电晕放电方面性能较好。通过适当整合,本方法可用于静电除尘器运行监控系统。
The wavelet neural network is introduced into the time-varying auto regressive parametric model, so a new time-varying auto-regressive parametric model based on wavelet neural network is presented. Using the model a nonstationary anti-electric-corona discharge signal is modeled. The characters of the discharge signal can be extracted by the model parameter. Based on these characters, it does not know whether the anti-electric-corona discharge phenomenon happens. Simulation results indicate that the TVAR model for modeling a discharge signal has a good performance for distinguishing the normal discharge and the anti-electriccorona discharge. Therefore, by proper coordinating, the method can be used as a monitor system of the electric dust catcher.
出处
《数据采集与处理》
CSCD
北大核心
2005年第3期328-332,共5页
Journal of Data Acquisition and Processing
基金
国家自然科学基金(60172072)
(60372081)资助项目
关键词
小波神经网络
反电晕放电
时变参数信号模型
静电除尘器监控
wavelet neural network
anti-electric-corona discharge
time-varying parametric model
electric dust catcher monitoring