期刊文献+

带有振动系数的一类高阶中立型非线性受迫微分方程的振动准则(英文) 被引量:1

Oscillation criteria for higher order neutral type nonlinear forced differential equations with oscillating coefficients
下载PDF
导出
摘要 在本文中,我们获得形如y(t)+∑lj=1pj(t)y(σj(t))(n)+∫0-τq(t,s)f(y(t+s))dσ(s)=h(t)的带有振动系数的一类高阶中立型非线性受迫微分方程的振动准则. Oscillation criteria are obtained for the higher order neutral type nonlinear forced differential equation with oscillating coefficients of the form[y(t) + l∑j=1 pj(t)y(σj(t))](n)+∫0-r q(t,s)f(y(t+s))dσ(s)=h(t)
机构地区 云南大学数学系
出处 《纯粹数学与应用数学》 CSCD 北大核心 2005年第2期111-117,122,共8页 Pure and Applied Mathematics
基金 云南省自然科学基金资助项目(2003A0001M).
关键词 非线性中立型受迫微分方程 振荡参数 振动性 nonlinear neutral forced differential equation oscillating coefficients oscillation
  • 相关文献

参考文献10

  • 1Bolat Y, Akin O. Oscillatory behaviour of higher order neutral type nonlinear forced differential equation with oscillating coefficients[J]. J. Math. Anal. Appl., 2004,290:302~309.
  • 2Agarwal R P, Grace S R, O'Regan D. Oscillation Theory for Difference and Differential Equations[M]. Kluwer Academic,Dordrecht, 2000.
  • 3Bainov D, Mishev D P. Oscillation Theory of Operator-Differential Equations[M]. Singapore, World Scientific, 1995.
  • 4Ladde G S, Lakshmikantham V, Zhang B G. Oscillation Theory of Differential Equations with Deviating Arguments[M]. NewYork: Dekker, 1987.
  • 5Bainov D, Mishev D P. Oscillation Theory for Neutral Differential Equations with Delay[M]. Adam New York:Hilger, 1991.
  • 6Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications[M]. Clarendon, Oxford, 1991.
  • 7Parhi N. Oscillations of higher order differential equations of neutral type[J]. Czech. Math. J., 2000,50:155~173.
  • 8Agarwal P R, Grace S R. The oscillation of higher order differential equations with deviating arguments[J]. Comput. Math. Appl. ,1999,38:185~199.
  • 9Grace S R, Lalli B S. Oscillation theorems for certain neutral differential equations[J]. Czech. Math.J. ,1988,38:745~783.
  • 10Agarwal R P, Thandapani E, Wong P J Y. Oscillation of higher order neutral differential equations.Appl[J]. Math. Lett., 1997,10:71~78.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部