期刊文献+

求解多维欧拉方程的二阶旋转输运格式 被引量:4

A second-order rotational upwind transport scheme for solving multi-dimensional compressible Euler equations
下载PDF
导出
摘要 提出了一个基于旋转近似Riemann求解器的二阶精度迎风型有限体积方法。不同于“网格相关”(Grid-aligned)的有限体积方法或者维数分裂的有限差分方法,本格式在求解Riemann问题时不依赖网格的方向,而是沿具有一定的物理意义的两个方向(称为迎风方向)。我们发现当迎风方向取为控制体界面两侧速度差矢量方向(及与之正交的方向)时,该格式能够完全消除基于Riemann求解器的通量差分裂格式存在的激波不稳定或者所谓“红斑”(carbuncle)现象。为了提高格式的时间和空间精度,我们通过在控制体界面处求解线化的广义Riemann问题的方法体现输运过程对通量计算的影响。这种方案,使得我们有可能以此为基础,构造真正多维的有限体积型迎风格式。 A second-order rotational upwind transport scheme for solving multi-dimensional compressible Euler equations is presented in this paper. In this scheme, the numerical fluxes are evaluated by solving two Generalized Riemarm Problems (GRP) in two upwind directions which include the direction of velocity-difference vector and the direction which is perpendicular to it. The GRPs are solved based on the Roe' linearization technique which takes the transportation effects into consideration. It is found that the scheme can eliminate the shock instabilities or carbuncle phenomena of the flux-difference splitting type schemes completely.
出处 《空气动力学学报》 CSCD 北大核心 2005年第3期326-329,共4页 Acta Aerodynamica Sinica
基金 NKBRSF(NO.2001CB409600) NSF(19972035)资助
关键词 数值模拟 欧拉方程 多维格式 激波捕捉 Riemann求解器 “红斑”现象 Euler equation multi-dimensional scheme shock capture Riemann solver carbuncle phenomena.
  • 相关文献

参考文献9

  • 1GODUNOV S. Finite difference methods for numerical computation of discontinuous solutions of the equations of fluid dynamics [J]. Math. Sb. 1959,47:271-290.
  • 2VAN LEER B. Towards the ultimate conservative difference scheme V [J]. J. Comput. Phys., 1979,32:101-136.
  • 3HARTEN A, LAX P. A random choice finite difference scheme for hyperbolic conservation laws [ J]. SIAM J. Numer. Anal., 1981,18:289-315.
  • 4ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes [J]. J. Comput. Phys., 1981,43:357-372.
  • 5HARTEN A, HYMAN J M. Self adjusting grid methods for one-dimensional hyperbolic conservation laws [J]. J. Comput. Phys., 1983,50:235-269.
  • 6HUYNH H T. Accurate upwind methods for the Euler equations [J]. SIAM J . Numer . Anal. ,1995,32:1565-1619.
  • 7QUIRK J. A contribution to the great riemann solver debate [J]. Int. J. Numer. Meth. Fluid Dyn., 1994,18:555-574.
  • 8REN Yu-Xin. A robust shock-capturing scheme based on rotated Riemann solvers [ J ]. Computers and Fluids, 2003, 32:1379-1403.
  • 9WOODWARD P, COLELLA P. Numerical simulations of twodimensional fluid flow with strong shocks [ J]. J. Comput.Phys., 1984,54:115-173.

同被引文献20

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部