期刊文献+

具有峰值识别的神经网络模型对水沙过程的预报

Flood Process Forecasting Model with Recognition of Flood Peak Based on Neural Network Theory
下载PDF
导出
摘要 在经典BP神经网络模型的基础上,增设误差修正系数,实现网络误差修正权重倾向于输出样本的较大值.同时提出了一种计算输入输出向量的归一化公式.在此基础上建立了具有洪峰识别的BP网络预报模型.该模型能根据实测资料模拟和预报不同特征年的流量或含沙量过程.采用建立的模型,对宜昌水文站典型年实测流量过程及含沙量过程进行了预测检验,其结果与实测值吻合较好,对峰值的预报较经典BP模型有所提高. In this paper, the BP neural network model for flood forecasting is improved when add the correct coefficient,which error weight for bigger output example value is introduced into BP model to meet the peak flood. This model can simulate and forecast different characters' discharge process and their peak flood. The standardization formulas are proposed for calculating the vector of input and output. Finally, two years' result of measuring and forecasting discharge process at Yichang Station have been proved. It can be found that forecast result agrees well with the measured data.
作者 何文社
出处 《兰州交通大学学报》 CAS 2005年第4期1-4,共4页 Journal of Lanzhou Jiaotong University
基金 国家自然科学基金项目(50279024) 兰州交通大学青蓝工程基金资助
关键词 洪水预报 BP神经网络 峰值识别 含沙量 flood forecasting BP artificial neural network recognition of flood peak method silt content
  • 相关文献

参考文献6

  • 1沈世镒.神经网络系统理论及其应用[M].北京:科学出版社,2000..
  • 2Hsu K. Artificial neural network modeling of the rainfall-runoff process[J].Water Resources Research,1995,31(10):2 517-2 530.
  • 3R Hecht-Nielsen.Application of counter propagation networks[J].Neural Networks,1988,(1):131-139.
  • 4R Hecht-Nielsen.Theory of Backpropagation neural networks[M].Proc.IJCNN-89,I-593,1989.
  • 5Linda See,Stan Openshaw.Applying soft computing approaches to river level forecasting[J].Hydrological sciences-journal-des sciences hydrologiques,1999,44(5):763-778.
  • 6何文社.三峡水文泥沙分析及其信息系统设计[R]:四川大学与中国长江三峡工程开发总公司联合培养博士后研究报告[R].,2004..

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部