期刊文献+

基于改进型Elman神经网络和遗传算法的锅炉在线燃烧优化 被引量:10

On-line Optimizing Combustion for the Boiler Based on Modified Elman Neural Network and Genetic Algorithm
下载PDF
导出
摘要 目前,电站锅炉燃烧优化要求在保证燃烧效率的基础上降低NOx的排放,即同时满足电站经济性和环保的要求。利用改进型Elman网络结构简单、计算量小、容易收敛和动态学习的特点,建立锅炉燃烧预测模型,并结合遗传算法的寻优特性,在线地搜寻出一定工况下可操作量的最优控制方案,可实时地指导运行人员。仿真试验结果表明,该预测模型实现了锅炉高效低氮燃烧优化寻优,且满足实时性的要求。 In the present, combustion optimization for the boilers in power station is required by reduce NOx emissions which based on ensure combustion efficiency. That is to say, economics and environmental protection should be satisfied at the same time. In this paper, modified Elman neural network is used to constitute prediction model for boiler's combustion, which has such characteristic as simple structure, low computational complexity, easy to convergence, dynamic learning. Ability of searching optimum point of Genetic Algorithm (GA) is used too, which is combined with modified Elman neural network. In this way, optimal control scheme of governable parameters in operating comditions can be searched, which can realize on-line guiding operator to operate. Simulation result shows that this model is effective, which can achieve optimum searching of high efficiency, low NOx combustion in the boiler, and can satisfy the demand for real-time.
作者 秦鹏 林中达
出处 《锅炉技术》 北大核心 2005年第5期37-41,54,共6页 Boiler Technology
关键词 燃烧优化 NOX排放 改进型Elman神经网络 遗传算法 combustion optimizing NOx emissions modified elman neural network Genetic Algorithm(GA)
  • 相关文献

参考文献5

二级参考文献9

  • 1韩宾.四角切圆燃烧控制NO_x排放[J].锅炉技术,1996(9):15-19. 被引量:11
  • 2曾汉才.燃烧污染[M].武汉:华中理工大学出版社,..
  • 3Hechi Nielsen R.Theory of the back propagation neural network [M].Proc of IJCNN,1989,1:593-603.
  • 4焦李成(Jiao Licheng).神经网络系统理论(The theory of neural network system)[M].西安:西安电子科技大学出版社(Xi'an:Xi'an Electronic and science University Press),1990,242-251.
  • 5Yin C,Luo Z,Zhou J,et al.A novel non-linear programming-based coal blending technology for power plants [J].Chemical Engineering Research and Design,2000,78(1):118-124.
  • 6Carsky M,Kuwornoo D K.Neural network modelling of coal pyroly-sis [J].Fuel,2001,80(7):1021-1027.
  • 7Zhu Q,Jones J M,Williams A,et al.The predictions of coal/char combustion rate using an artificial neural network approach [J].Fuel, 1999,78(14):1755-1762.
  • 8钱诗智,陆继东,李广.煤焦非均相着火温度与煤种关系的神经网络模型[J].应用科学学报,1997,15(2):211-216. 被引量:5
  • 9周昊,朱洪波,曾庭华,廖宏楷,岑可法.基于人工神经网络的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2002,22(6):96-100. 被引量:76

共引文献101

同被引文献133

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部