期刊文献+

基于危险理论的免疫识别新算法 被引量:5

A Novel Immune Discrimination Algorithm Based on Danger Theory
下载PDF
导出
摘要 为提高系统对“危害”的识别能力,基于免疫学中的“危险理论”提出了一种新的免疫识别算法.该算法以识别“危险”为核心思想,增加了对抗原提呈细胞和不同危险信号的使用.仿真实验结果表明,该方法与传统方法相比,具有更高的识别率. To improve the system's capability of discrimination against danger, a novel immune discrimination algorithm based on the newly developed “Danger Theory” in immunology is proposed. This algorithm is based on the thinking of “danger” discrimination and introduced antigen presenting cell and different danger signals. Experimental results show that new algorithm provides by higher discrimination ratio.
作者 于瀛 侯朝桢
出处 《控制与决策》 EI CSCD 北大核心 2005年第9期1026-1029,共4页 Control and Decision
关键词 危险理论 负选择 免疫识别 Danger theory Negative selection t Immune discrimination
  • 相关文献

参考文献6

  • 1蔡自兴,龚涛.免疫算法研究的进展[J].控制与决策,2004,19(8):841-846. 被引量:56
  • 2Forrest S, Perelson A S, Allen L, et al. Self-nonself Discrimination in a Computer[A]. Proc of IEEE Symposium on Research in Security and Privacy[C]. Oakland, 1994: 202-212.
  • 3Matzinger P. The Danger Model: A Renewed Sense of Self[J]. Science, 2002, 296(12): 301 -305.
  • 4Aickelin U, Cayzer S. The Danger Theory and Its Application to AIS[A]. Proc of the First Int Conf on AIS[C]. England, 2002: 141-148.
  • 5Emma Hart, Peter Ross. Improving SOSDM: Inspirations From the Danger Theory[A]. Proc of the Second Int Conf on AIS[C]. Berlin: Springer-Verlag, 2003: 194-203.
  • 6李大华.应用泛函分析[M].武汉:华中科技大学出版社,1999.58-63.

二级参考文献30

  • 1龚涛,蔡自兴.自然计算的广义映射模型[J].计算机科学,2002,29(z1):27-29. 被引量:4
  • 2Jerne N K. Towards a network theory of the immune system[J]. Ann Immunol,1974,125C:373-389.
  • 3Ishiguro A,Watanabe Y,Ichikawa S, et al. Gait control of hexapod walking robots using mutual-coupled immune network[J]. Advanced Robotics,1996,10(2):179-195.
  • 4Tang Z,Yamaguchi T, Tashima K, et al. Multiple-valued immune network model and its simulations[A]. Proc 27th Int Symp on Multiple-valued Logic[C]. Autigonish,1997.233-238.
  • 5Herzenberg L A,Black S J. Regulatory circuits and antibody response[J]. European J of Immun,1980,10(1):1-11.
  • 6Leandro N D C, Fernando J V Z. Learning and optimization using the clonal selection principle[J]. IEEE Trans on Evolutionary Computation,2002,6(3):306-313.
  • 7Leandro N De Castro,Fernando J Von Zuben. Lear-ning and optimization using the clonal selection prin-ciple[J]. IEEE Trans on Evolutionary Computation,2002,6(3):306-313.
  • 8Bersini H, Varela F. Hints for adaptive problem solving gleaned from immune network[A]. Parallel Problem Solving from Nature[C].Berlin Heidelberg: Springer-Verlag,1991.343-354.
  • 9Dasgupta D, Forrest S. An anomaly detection algorithm inspired by the immune system[A]. Artificial Immune System and Their Applications[C].Berlin: Springer-Verlag,1998.262-277.
  • 10Jiao Licheng,Wang Lei. Novel genetic algorithm based on immunity [J]. IEEE Trans on Systems, Man and Cybernetics - Part A: Systems and Humans,2000,30(5):552-561.

共引文献55

同被引文献85

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部