期刊文献+

基于序贯重要采样算法的被动单站机动目标跟踪 被引量:4

Sequential importance sampling method for tracking a maneuvering target with a single passive observer
下载PDF
导出
摘要 将序贯重要采样(SIS)与交互多模型(IMM)算法相结合,提出了一种新的机动目标跟踪方法———IMM-SIS算法,并将其应用于被动单站跟踪系统,同高斯和粒子滤波器(IMM-GSPF)算法相比,其优点是不需要重采样步骤,也不会出现采样粒子的退化和贫乏现象.通过跟踪一个机动目标的仿真过程,对算法性能进行了检验,结果表明,该算法在计算速度和跟踪精度方面均优于IMM-GSPF算法,同经典的IMM-EFK算法相比,两种算法在鲁棒性和精度上都是优越的. An IMM-SIS( Interacting Multiple Model-Sequential Importance Sampling) algorithm is presented for tracking a maneuvering target by a proper combination of two approaches: IMM and SIS, and it is used in the single passive tracking system. The advantage of the presented algorithm over the IMM-GSPF( Gaussian Sum Particle filter) is that it does not need the resampling step and avoids the particle degeneracy and impoverishment phenomenon. The performance of the IMM-SIS algorithm is verified by simulating a highly maneuvering target tracking. Results show that the tracking speed and accuracy of the IMM-SIS algorithm are better than those of the IMM-GSPF, the tracking robustness and accuracy of the SIS and GSPF algorithms are better than those of the classical EKF.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第5期820-824,共5页 Journal of Xidian University
基金 国家部委预研基金资助项目(41101050108)
关键词 粒子滤波器 被动跟踪 单站 机动目标 交互多模型-序贯重要采样 高斯和粒子滤波器 particle filter passive tracking single observer maneuvering target IMM-SIS IMM-GSPF
  • 相关文献

参考文献1

二级参考文献2

  • 1孙仲康,单多基地有源无源定位技术,1996年
  • 2林象平,雷达对抗原理,1985年

共引文献35

同被引文献35

  • 1辛云宏,杨万海.IRST系统的单站机动目标跟踪算法研究[J].光子学报,2004,33(9):1131-1135. 被引量:8
  • 2Gordon N J, Salmond D J. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proc of Institute Engineering, 1993, 140(2): 107-113.
  • 3Julier S J, Uhlmann J K.Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 4Kazufumi Ito, Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering Problems[J]. IEEE Transactions on Automatic control, 2000, 45(5): 910-927.
  • 5M.Sanjeev Arulampalam, Simon Maskell, Neil Gordon, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 6Jayesh H. Kotecha, Petar M, Djuric'. Gaussian Particle Filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601.
  • 7Jayesh H. Kotecha, Petar M. Djuric'. Gaussian sum Particle Filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2603-2613.
  • 8H A P Blom, Y Bar-Shalom. The IMM algorithm for system with Markovian switching coefficients[J]. IEEE Transactions on Automatic Control, 1988, 33: 780-783.
  • 9S.McGinnity, GW.Irwin. Multiple Model Bootstrap Filter for Maneuvering Target Tracking[J]. IEEE Trans.Aerosp.Electron. Syst, 2000, 36(3): 1006-1012.
  • 10Y. Boers, J.N. Driessen. Interacting multiple model particle filter[J]. IEE Proc.-Radar Sonar Navig, 2003, 150(5): 344-349.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部