期刊文献+

高非线性度n-输入m-输出布尔函数的一般构造方法(英文) 被引量:1

Generalized Construction of n-input m-output Boolean Functions with High Nonlinearity
下载PDF
导出
摘要 给出一种构造具有高非线性度n-输入m-输出布尔函数的一般方法,还给出了存在非线性度是非0的n-输入m-输出布尔函数的一个充要条件. This paper presents one generalized construction of n-input m-output Boolean functions with high nonliearity. It also gives the sufficient and necessary conditions for existing n-input m-output Boolean function whose nonliearity is nonzero.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期29-33,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 supported by NNSF of China (60162060), and the trans-century training program foundation forthe talents by the education ministry of china, and the foundation for university key teascher by theeducation ministry of china
关键词 布尔函数 非线性度 Reed—Muller码 Boolean function nonlinearity Reed-Muller code
  • 相关文献

参考文献6

  • 1Pasalic E, Maitra S. Linear codes in generalized construction of resilient fimctions with very high nonlinearity[J].IEEE Transactions on Information Theory, 2002,48 ( 8 ): 2182 - 2191.
  • 2Nyberg, K. Differentially uniform mappings for cryptography[J]. In Advances in Cryptology-EUROCRYPT'93(Lecture Notes in Computer Science), Berlin : Springer-Verlag, 1994, 765 : 55- 64.
  • 3Wadayama T, Hada T, Wakasugi K, et al. Upper and lower bounds on maximum nonlinearity of n-input m-output Boolean function[J]. Designs, Codes and Cryptograph, 2001,23 : 23- 33.
  • 4MacWilliams F J, Sloane N J A. The Theoryof Error Correcting Codes[M]. Amsterdam: North Holland, 1977.
  • 5Sarkar P, Maitra S. Constructions of nonlinear Boolean functions with important cryptographic properties[J]. In Advances in Cryptology-EUROCRYPT 2000 (Lecture Notes in Computer Science), Berlin: Springer-Verlag, 2000,1807:486-506.
  • 6Neberg K. Constructions of bent functions and difference setss[J]. In Advances in Cryptology-EUROCRYPT'90(Lecture Notes in Computer Science), Berlin: Springer-Verlag, 1991,473 : 155- 160.

同被引文献9

  • 1REN Kui,PARK Jaemin,KIM Kwangjo.On the construction of cryptographically strong Boolean functions with desirable trade-off[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(5):358-364. 被引量:1
  • 2郭锦辉,李世取.布尔函数扩散性的矩阵刻画[J].电子与信息学报,2006,28(4):712-716. 被引量:2
  • 3Preneel B, Leekwijck W V, Linden L V, Govaerts R, and Vandewalle J. Propagation characteristics of Boolean functions [C]. Advances in Cryptology-EuroCrypt'90, Spring, Berlin, 1991: 161-173.
  • 4Zhang X M and Zheng Y L. CAC-the criterion for global avalanche characteristics of cryptographic functions [J]. Journal of Universal Computer Science. 1995, 1(5): 320-337.
  • 5Rothaus O S. On "bent" hmctions [J]. Journal of Combinatorial Theory, 1976, 20(A): 300-305.
  • 6Son J J, Lim J I, Chee S, and Sung S H. Global avalanche characteristics and nonlinearity of balanced Boolean function [J]. Information Processing Letters, 1998, 65: 139-144.
  • 7Sung S H, Chee S, and Park C. Global avalanche characteristics and propagation criterion of balanced Boolean functions [J]. Information Processing Letters, 1999, 69: 21-24.
  • 8Stanica P and Sung S H. Improving the nonlinearity of certain balanced Boolean functions with good local and global avalanche characteristics [J]. Information Processing Letters, 2001, 79: 167-172.
  • 9Carlet C. The complexity of Boolean functions from cryptographic viewpoint[J], http:// drops.dagstuhl.de/opus /volltexte/2006/604.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部