摘要
A precursor of Ce0.8Y0.2O1.9(YDC) solid electrolyte was synthesized by the gol-gel method. YDC and phosphates powders were prepared by mixing the YDC and phosphates according to different weight ratios. The mixtures of the YDC and binary phosphates were ground and sintered at 1 400 ℃. The proton conductivity in solid electrolyte of the sintered samples was examined using electrochemical methods at 400~800 ℃. Ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid state proton conducting cell reactor. The optimal condition for the ammonia production was determined. The result indicated that composite electrolyte of 80wt% YDC: 20wt% binary phosphates as proton conductor could obtain the highest ionic conductivity and ammonia production rate among the four samples, the rate of evolution of ammonia was up to 9.5 × 10-9 mol·s-1·cm-2.
A precursor of Ce0.8Y0.2O1.9(YDC) solid electrolyte was synthesized by the gol-gel method. YDC and phosphates powders were prepared by mixing the YDC and phosphates according to different weight ratios. The mixtures of the YDC and binary phosphates were ground and sintered at 1 400 ℃. The proton conductivity in solid electrolyte of the sintered samples was examined using electrochemical methods at 400-800 ℃. Ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid state proton conducting cell reactor. The optimal condition for the ammonia production was determined. The result indicated that composite electrolyte of 80wt% YDC: 20wt% binary phosphates as proton conductor could obtain the highest ionic conductivity and ammonia production rate among the four samples, the rate of evolution of ammonia was up to 9.5 × 10^-9 mol·s^-1·cm^-2.
出处
《无机化学学报》
SCIE
CAS
CSCD
北大核心
2005年第10期1551-1555,共5页
Chinese Journal of Inorganic Chemistry
基金
新疆高校科研重点项目(No.XJedu2004I11)资助
关键词
复合电解质
离子电导率
常压合成氨
YDC
composite electrolyte
ionic conductivity
ammonia synthesis at atmospheric pressure
YDC