期刊文献+

一类耦合非线性Schrdinger方程组的集中现象

Concentration of Coupled Cubic Nonlinear Schrdinger Equations
下载PDF
导出
摘要 在二维空间中考虑了一类非线性Schr dinger方程组.在能量守恒及质量守恒的基础上,通过对解的极限行为的研究,建立了一系列解在原点的局部恒等式,得到了方程组的径向对称爆破解的集中性质. A coupled nonlinear Schroedinger equations is considered in 2-D space.Based upon the conservation of mass and energy, local identifies was established by the study of the limit behavior of the solutions, and concentration for the blow-up solutions with radially symmetry was obtained.
作者 李晓光 张健
出处 《应用数学和力学》 CSCD 北大核心 2005年第10期1229-1235,共7页 Applied Mathematics and Mechanics
基金 国家自然基金资助项目(10271084) 四川省重点实验室四川师范大学计算机软件实验室基金资助项目
关键词 非线性SCHROEDINGER方程 整体解 爆破 爆破点 集中 nonlinear Schroedinger equation global existence blow up blow-up point concentration
  • 相关文献

参考文献8

  • 1Newboult G K, Parker D F, Fanlkner T R. Coupled nonlinear Schrodinger equations arising in the study of monomode step-index opitical fibers[J]. Journal of Mathematical Physics, 1989,30(4):930-936.
  • 2Hayata K, Koshiba M. Multidimennsional solutions in cubic nonlinear media[ J]. Optics Letters, 1994,19(21): 1717-1719.
  • 3Weinstein M I. Nonlinear Schrodinger equations and sharp interpolation estimates[ J]. Communica tions Mathematical Physics, 1983,87( 4 ) :567-576.
  • 4Merle F, Tsutumi Y. L2-concentration of blow-up solution for the nonlinear Schrodinger equations with the critical power nonlinearity[ J ]. Journalof Differential Equations, 1990,84 ( 2 ): 205-214.
  • 5Weinstein M I. On the structure and formation singularities in solutions to nonlinear dispersive evolution equations[J]. Communications in Partial Differential Equations, 1986,11(5) :545-565.
  • 6ZHANG Jian. Instability of optical solitions for two-wave interaction model in cubic nonlinear media [J]. Advance in Mathematical Sciences and Applications, 1998,8(2) :691-713.
  • 7Strauss W A. Existence of solitary waves in higher dimensions[ J ]. Communications MathematicalPhysics, 1977,55( 1 ): 149-162.
  • 8Cazenave T. An Introduction to Nonlinear Schrodinger Equations [ M]. Textos de Metodos Matematicos,26, Rio de Janero:Instituto de Mathmatica-UFRJ, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部