期刊文献+

Quasi-dual模和V-环的一个新的推广(英文) 被引量:1

ON QUASI-DUAL MODULES AND A NEW GENERALIZATION OF V-RINGS
下载PDF
导出
摘要 定义了quasi-dual模,讨论了它的性质和等价条件,并且通过quasi-dual模,详细讨论了V-环的一个新的推广结构,得到了以下等价条件:1R/Soc(RR)是右V-环;2每一个R的本质真右理想是极大右理想的交;3存在一个奇异半单右R-模是quasi-dual的. The paper defines the quasi-dual module,and discusses its characters and equivalent conditions. A new generalization of V-rings is given by terms of quasi-dual module. R/Soc(RR) is a right V-ring if and only if every proper essential right ideal E of R is an intersection of maximal right ideals ,if and only if there exists a singular semisimple right R-module which is quasi-dual.
作者 郭勇华 易忠
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2005年第3期33-37,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 EYTPofMOEofChina(2002-40) NSFofGuangxi(0135005,0447032) GuangxiNormalUniversi-tyYouthResearchGrant
关键词 quasi-dual环 V-环 零化子 奇异模 quasi-dual ring V-ring annihilator singular module
  • 相关文献

参考文献13

  • 1Page S S,Zhou Y. Quasi-dual rings[J]. Comm Algebra,2000,28(1):489-504.
  • 2Anderson F W,Fuller K R. Rings and categories of modules[M]. Berlin:Springer-Verlag, 1974.
  • 3Lam T Y. Lectures on modules and rings[M]. Berlin:Springer-Verlag,1998.
  • 4李珊珊,汪明义.关于P-平坦模[J].广西师范大学学报(自然科学版),2004,22(4):36-40. 被引量:14
  • 5Ramamurthy V S,Rangaswamy K M. Generalised V-rings[J].Math Scandinavica,1972,31:69-77.
  • 6Varadarajan K. Generalised V-rings and torsion theories[J]]. Comm Algebra,1986,14(3):455-467.
  • 7Baccela G. Generalized V-rings and yon Neumann regular rings[J].Rend Sem Mat Univ Padova,1984,72:117-133.
  • 8Tominaga H. On S-unital rings[J]. Math J Okayama Univ,1976,18:117-133.
  • 9Yousif M F. V-modules with Krull dimension[J]. Bull Austral Math Soc, 1988,37:237-240.
  • 10Faith C,Menal P. A new duality theorem for semisimple modules and characterization of Villamayor rings[J]]. Proc Amer Math Soc,1995,123(6) :1 635-1 637.

二级参考文献9

共引文献13

同被引文献12

  • 1Morita K. Duality for modules and its applications to the theory of rings with minimum condition [ J ]. Science Reports of the To- kyo Kyoiku Daigaku:Sect A,1958,6(150) : 83 - 142.
  • 2Borooah G, Diesl A J, Dorsey T J. Strongly clean matrix rings over commutative local rings [ J ]. J Pure Appl Algebra,2008,212 (1) : 281 - 296.
  • 3Krylov P A, Tuganbaev A A. Modules over formal matrix rings [ J ]. Journal of Mathematical Sciences,2010,171 ( 2 ) : 248 - 295.
  • 4Tang Gaohua, Zhou Yiqiang. A class of formal matrix rings [ J ]. Linear Algebra Appl,2013,438 ( 12 ) :4672 - 4688.
  • 5Tang Gaohua,Zhou Yiqiang. Strong cleanness of generalized matrix tings over a local ring[J]. Linear Algebra Appl,2012,437 (10) : 2546 - 2559.
  • 6Harte R E. On quasinilpotents in rings[ J]. Panamer Math J, 1991 (1) : 10-16.
  • 7Koliha J J, Patricio P. Elements of rings with equal spectral idempotents[ J]. J Austral Math Soc,2002,72( 1 ) :137 - 152.
  • 8Ying Zhiling, Chen Jianlong. On quasipolar rings [J].Algebra Colloq,2012,19 (4) : 683 - 692.
  • 9Cui Jian, Chen Jianlong. When is a 2 x 2 matrix ring over a commutative local ring quasipolar? [ J]. Comm Algebra ,2011,39 (9) : 3212 -3221.
  • 10Wang Zhou, Chen Jianlong. Pseudo Drazin inverses in associative rings and Banach algebras [ J ]. Linear Algebra Appl, 2012, 437(6) : 1332 - 1345.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部