期刊文献+

几何约束求解的BFGS-混沌混合算法 被引量:6

Combined BFGS-chaos method for solving geometric constraint
下载PDF
导出
摘要 为了提高约束求解的效率和鲁棒性,提出了一个将混沌方法嵌入BFGS算法的约束求解混和算法.将约束求解问题转化为优化问题,并对多变量函数求全局极值,用混沌算法跳过局部搜索陷阱.算法分析确定几何元素的初始搜索范围,并利用BFGS方法的超线性收敛速度和混沌优化方法的内在特点进行求解.对Camel函数极值和正五边形约束求解的实验结果表明,该混合算法能够处理欠/过约束问题,有效克服BFGS算法容易陷入局部最优以及无法越过临界点的情况,可以高效鲁棒地进行约束求解. To improve the efficiency and robustness of constraint solving algorithms, a hybrid algorithm to integrate chaos method into BFGS algorithm was proposed. By translating a geometric constraint problem into an optimization problem, the global optimum of a multi-variation function was sought for and the local traps were ignored by using chaos method in the algorithm. After the initial ranges of geometric elements were defined, the algorithm was solved by utilizing the characteristic of high convergence speed of the BFGS algorithm and the inherent virtue of the chaos optimization method. The experimental results on Camel function and 5-side polygon indicate that the algorithm can handle under-/over- constraint problem, can overcome the drawbacks that the BFGS algorithm easily fails in local optimum and cannot skip the critical point, and can solve constraint problems efficiently and robustly.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第9期1334-1338,共5页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2003AA423120)国家"973"重点基础研究发展规划资助项目(2002CB312106).
关键词 几何约束求解 BFGS法 混沌法 混合法 geometric constraint solving Broyden Fletcher Goldfarl Shanno (BFGS) method chaos method combined method
  • 相关文献

参考文献10

  • 1李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535
  • 2刘向东,黄文虎.混沌系统延迟反馈控制的理论与实验研究[J].力学进展,2001,31(1):18-32. 被引量:34
  • 3DURAND C, HOFFMANN C M A. Systematic framework for solving geometric constraint analytically[J]. Journal of Symbolic Computing, 2000, 30(5): 483 - 520.
  • 4PODGORELEC D, ZALIK B. A geometric constraint solver with decomposable constraint set [EB/OL]. http: //wscg.zcu. cn/wscg2000/wscg -2001 - full. htm. 2000 - 06 - 20.
  • 5GE J X, CHOU S C, GAO X S. Geometric constraint solving with optimization methods[J]. Computer-Aided Design, 2002, 31(14): 867-879.
  • 6NEMHAUSER G L, KAN A R, TODD M J. Optimization amsterdam [M]. North-Holland: Elsevier, 1989.
  • 7ELSTER K H. editor. Modern mathematical methods of optimization [M]. Berlin: Akademie. 1993.
  • 8LI S J, MOU X Q, CAI Y L. Improving security of a chaotic eneryption approach [J]. Piaysies Letters A, 2001,290 (3-4): 127- 133.
  • 9ALVAREZ E, FERNANDEZ A, GARCIA, etal. New approach to chaotic encryption[J]. Physics Letters A,1999, 263 (4-6): 373-375.
  • 10唐敏,林军呈,宓晓峰,董金祥.一种等距曲面求交的新算法[J].浙江大学学报(工学版),2003,37(4):397-400. 被引量:5

二级参考文献22

  • 1REQUICHA A A G, VOELCHER H B. Solid modeling: A historical summary and contemporary assessment [J]. IEEE Computer Graphics and Applications,1992, 2(2), 9--24.
  • 2HOHMEYER M E. Robust and efficient intersection for solid modeling [D]. California:University of California, Berkeley, 1992.
  • 3KRISHNAN S, MANOCHA D. An efficient surface intersection algorithm based on the lower dimensional formulation [J]. Aau Transa Dions on Graphics, 1997, 16(1):74-106.
  • 4HU C Y, MAEKAWA T, PATRIKALAKIS N M, et al. Robust interval algorithm for surface intersections[J]. Computer Aided Design, 1997, 29(9):617--627.
  • 5GRANDINE T A, KLEIN F W IV. A new approach to the surface intersection problem [J], Computer Aided.
  • 6WANG Y. Intersection of offsets of parametric surfaces [J]. Computer Aided Geometric Design, 1996,13:453--465.
  • 7GRANDINE T A. Applications of Contouring [J].SIAM Review,2000, 42(2): 297--316.
  • 8WILER K J. Edge-based data structures for solid modeling in curved-surface environments [J]. IEEE Computer Graphics and Applications,1985,5(1):21 40.
  • 9SEDERBERG T W, NISHITA T. Geometric hermit approximation of surface patch intersection curves[J].Computer Aided Geometric Design, 1991, 8: 97 -- 114.
  • 10REQUICHA A A G, ROSSIGNAC J R. Solid modeling and beyond [J]. IEEE Computer Graphics and Applications, 1992,12(5):31 --44.

共引文献571

同被引文献55

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部