期刊文献+

时态空间中时态序列模式的数据挖掘(英文) 被引量:4

Data Mining of Temporal Sequence Patterns in a Temporal Space
下载PDF
导出
摘要 时态数据挖掘是目前数据挖掘领域的研究热点。与其它相关研究不同,文章致力于利用时态序列模式挖掘进行预测与决策。首先介绍了时态类型的分类;然后定义了一个新的时态空间模型,用以描述基于不同时态类型、不同属性的各个不同对象的状态,并且为高效地进行预测与决策提供支持;最后,给出了时态空间模型中数据挖掘的四种时态序列模式,对时态数据挖掘的研究具有重要意义。 The temporal data mining has been very important in data mining according to many studies. Our study is motivated by prediction and decision making, which is different from other studies. This paper introduces a class of temporal type. Then, we define a type of new temporal space model describing various states of objects based on the different attributes with the temporal type, which has not been addressed explicitly by previous time model and can provide the prediction and decision in the short time for aforementioned fields. Finally, we give four types of temporal sequence patterns of the data mining in the temporal space model It is very significant to develop the temporal data mining.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第9期35-39,共5页 Microelectronics & Computer
基金 国家自然科学基金资助(70271021) 西安文理学院科研基金资助(zk200427)
关键词 数据挖掘 知识发现 时态类型 时间粒度 时态关联规则 Data mining, Knowledge discovery, Temporal type, Time granularity, Temporal association rule .
  • 相关文献

参考文献1

共引文献25

同被引文献18

  • 1董辉,吴习宇,余建桥.基于遗传BP神经网络的数据挖掘系统设计[J].农业网络信息,2004(6):7-10. 被引量:7
  • 2宫辉力,赵文吉,李京.多源遥感数据挖掘系统技术框架[J].中国图象图形学报(A辑),2005,10(5):620-623. 被引量:9
  • 3张波,刘胜辉.基于遗传BP神经网络的数据挖掘技术[J].自动化技术与应用,2005,24(9):4-6. 被引量:5
  • 4Bettini C, Wang X S, Jajodia S. Testing complex tamporal relationships involving multiple granularities and its application to data mining[C]//Proceedings of the 15th ACM SIGACT- SIGMOD SIGART symposium on Principles of database systems. Canada: Montreal, Quebec, 1996: 68-78.
  • 5JP Caraca - Valente, Lopez - Chavarrias I. Discovering similar patterns in time series[C]//Proceedings of the 6th ACM SIGKDD international conference on Knowledge discovery and data mining. USA: Boston, Massachusetts, 2000 : 497 - 505.
  • 6Garofalakis M. Mining sequential patterns with regular expression constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2002,14(3) :530 - 552.
  • 7John Shawe-Taylor,Nello Cristianini.Kernel methods for pattern analysis.Cambridge UK:Cambridge University Press,2004:67~78
  • 8Sadohara K.Learning of boolean functions using support vector machines.Proceedings of the international conference on algorithmic learning theory,Lecture notes in artificial intelligence,German:Springer-Verlag Press,2001,2225:106~118
  • 9W Li,Han J,Pei J.CMAR:Accurate and efficient classification based on multiple class-association rules.Proceeding of the 2001 IEEE International Conference on Data Mining (ICDM'01),2001:34~54
  • 10Yin X,Han J.CPAR:Classification based on predictive association rules.In 'Proceedings of 2003 SIAM International Conference on Data Mining (SDM'03)',2003:34~42

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部