摘要
提出了一种新型故障诊断的粗糙集方法。在粗糙集知识系统中信息熵概念基础上,重新定义了一种信息熵度量方法,并运用信息熵判断系统状态;基于粗糙集优越的约简理论,运用一种改进的区分矩阵方法形成一种综合策略的诊断规则。该方法有效地解决随机误报以及信息丢失和信息不完备情况下仍保持着较好的诊断性能,并降低了计算复杂度,减少了计算开支。
A novel approach to fault detection and diagnosis in system was presented based on information entropy and rough sets theory. It can extract rough decision rules from crude data using reduction theory. An new entropy-based criterion is used to measure knowledge capacity, and the change of information entropy can evaluate the status of the system ;the key information in several reductions to generate the diagnosis rules was synthesized by an improved discernibility matrix,which can deal with incomplete an inconsistent information by utilizing redundant information sufficiently. Experimental result shows that the method not only can have a good diagnosis performance under incomplete information and solve random misinformation, but also can reduce calculation complexity and cost.
出处
《微电子学与计算机》
CSCD
北大核心
2005年第9期114-116,共3页
Microelectronics & Computer
基金
国防预研基金项目(03GJ068-037)
空军工程大学优秀博士论文基金项目
关键词
故障诊断
粗糙集
信息熵
约简
核
冗余信息
不确定性度量
Fault detection and diagnosis, Rough set, Information entropy, Reduction, Core, Redundancy information,Uncertainty measurement