期刊文献+

一种改进的设备故障诊断方法 被引量:2

Research on an Improved Approach of Fault Diagnosis
下载PDF
导出
摘要 提出了一种新型故障诊断的粗糙集方法。在粗糙集知识系统中信息熵概念基础上,重新定义了一种信息熵度量方法,并运用信息熵判断系统状态;基于粗糙集优越的约简理论,运用一种改进的区分矩阵方法形成一种综合策略的诊断规则。该方法有效地解决随机误报以及信息丢失和信息不完备情况下仍保持着较好的诊断性能,并降低了计算复杂度,减少了计算开支。 A novel approach to fault detection and diagnosis in system was presented based on information entropy and rough sets theory. It can extract rough decision rules from crude data using reduction theory. An new entropy-based criterion is used to measure knowledge capacity, and the change of information entropy can evaluate the status of the system ;the key information in several reductions to generate the diagnosis rules was synthesized by an improved discernibility matrix,which can deal with incomplete an inconsistent information by utilizing redundant information sufficiently. Experimental result shows that the method not only can have a good diagnosis performance under incomplete information and solve random misinformation, but also can reduce calculation complexity and cost.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第9期114-116,共3页 Microelectronics & Computer
基金 国防预研基金项目(03GJ068-037) 空军工程大学优秀博士论文基金项目
关键词 故障诊断 粗糙集 信息熵 约简 冗余信息 不确定性度量 Fault detection and diagnosis, Rough set, Information entropy, Reduction, Core, Redundancy information,Uncertainty measurement
  • 相关文献

参考文献6

  • 1刘宜平,沈毅,童树鸿,刘志言.设备故障诊断的粗糙集方法研究[J].高技术通讯,2001,11(5):77-79. 被引量:8
  • 2谭天乐,宋执环,李平.基于粗糙集的故障诊断方法[J].浙江大学学报(工学版),2003,37(1):47-50. 被引量:17
  • 3Zdzislaw Pawlak. Rough Sets [J]. International Journal of Computer and Information Sciences, 1982,11(5): 341~356.
  • 4Zdzislaw Pawlak, Jeray Grzy Mala Busse, Roman Slowinski. Rough Sets[J]. Communications of ACM, 1995, 38(11):89~95.
  • 5Shen Lixiang, Tay Francis E H, Qu Liangsheng,et al. Fault Diagnosis Using Rough Sets Theory [J]. Computers in Industry, 2000, 43(1): 61~72.
  • 6Chen Xianghui, Zhu Shanjun, JI Yin-dong. Entropy Based Uncertainty Measures for Classification Rules within Consistency Tolerance [A]. IEEE International Conference on Systems, Man and Cybernetics [C]. Nashville: IEEE, 2000,4: 2816~2821.

二级参考文献8

  • 1曾黄麟.粗集理论及其应用(一)[J].四川轻化工学院学报,1996,9(1):18-28. 被引量:41
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3[2]CHEN Xiang-hui, ZHU Shan-jun, JI Yin-dong. Entropy based uncertainty measures for classification rules with inconsistency tolerance[A].IEEE International Conference on Systems, Man, and Cybernetics[C]. Nashville: IEEE,2000,4:2816-2821.
  • 4[4]NILSSON N J. Artificial intelligence: A new synthesis[M].Beijing:Machine Press,1999.
  • 5[5]SHEN Li-xiang, TAY F E H,QU Liang-sheng, et al. Fault diagnosis using rough sets theory[J].Computers in Industry,2000, (43): 61-72.
  • 6[6]SHI Wen-gang,Wang Ri-xin,Huang Wen-hu. Application of rough set theory to fault diagnosis of check valves in reciprocating pumps[A].Canadian Conference on Electrical and Computer Engineering[C]. Toronto: CCECC, 2001,2:1247-1250.
  • 7李永敏,朱善君,陈湘晖,张岱崎,韩曾晋.基于粗糙集理论的数据挖掘模型[J].清华大学学报(自然科学版),1999,39(1):110-113. 被引量:109
  • 8韩祯祥,张琦,文福拴.粗糙集理论及其应用综述[J].控制理论与应用,1999,16(2):153-157. 被引量:156

共引文献22

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部