期刊文献+

基于融合特征和LS-SVM的脱机手写体汉字识别 被引量:4

Off-line handwritten Chinese character recognition based on fusion features and LS-SVM
下载PDF
导出
摘要 提出的脱机手写体汉字识别系统主要研究特征提取和分类识别两个模块.特征提取模块主要包括采用基于不变矩和弹性网格技术的串行特征融合方法,所得到的特征向量不仅充分反映了手写体汉字的全局和局部特征,而且具有很强的区分表达能力.分类识别模块将神经网络多类分类策略与最小二乘支持向量机相结合,所得到的分类器不仅识别率高、泛化能力强,而且有效地解决了多类分类问题.实验证明本文提出的识别系统能够取得很好的识别效果. The proposed off-line handwritten Chinese character recognition system was composed of a feature extraction module and a recognition module. In the feature extraction module, the orthogonal Zernike moments and the elastic mesh technique were combined to get fusion features, which present the global and local features of handwritten Chinese characters and have great discriminative capability. As for the classification module, one approach that is very similar to the neural network classification strategy was used with the Least Square Vector Machine (LSSVM), which not only has the excellent performance of generalization and recognition accuracy, but also can solve the multi-classification issue effectively. Experimental results indicated that the proposed method could get good recognition results.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2005年第4期509-512,共4页 Journal of University of Science and Technology Beijing
关键词 脱机手写体汉字识别 最小二乘支持向量机 ZEMIKE矩 弹性网格 off-line handwritten Chinese character recognition least square support vector machine (LSSVM) Zernike moment elastic mesh
  • 相关文献

参考文献7

  • 1Hildebrandt T, Liu W. Optical recognition of handwritten Chinese characters: advances since 1980. Pattern Recognit, 1993, 26(2): 205
  • 2Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9(3): 293
  • 3Khotanzad A. Invariant image recognition by Zemike moments.IEEE Trans Pattern Anal Mach Intell, 1990, 12(5): 489
  • 4金连文,彭秀兰,尹俊勋.一种手写体汉字特征提取新方法——小波变换及弹性网格技术的应用[J].中国图象图形学报(A辑),1998,3(7):549-552. 被引量:24
  • 5Suyken J A K, Lukas L, van Dooren P, et al. Least squares support vector machine classifiers: a large scale algorithm. Eur Conf Circuit Theory Des, 1999, 8:839
  • 6Hsu C W, Lin C J. A comparison on methods for multi-class support vector machines. IEEE Trans Neural Networks, 2002,13:415
  • 7Kok S C. Efficient computations for large least square support vector machine classifiers. Pattern Recognit Lett, 2003, 24:75

二级参考文献7

  • 1张青,尹俊勋.小波变换在手写体汉字识别中的应用[J].电路与系统学报,1996,1(3):63-67. 被引量:8
  • 2Shunji Mori,Suen C Y, Kazuhiko Yamamoto. Historical Renew of OCR Research and development, Proceedinds of the IEEE,1992, 80(7): 1029-1058.
  • 3Trier I D, Jain A K, Taxt T. Feature extraction methods for character recognition -a survey. Pattern Recognition, 1996, 29(4): 641-662.
  • 4Li Tze Fen, Yu hiaw Shian.Handprinted Chinese Character Recognition Using The Probability Distribution Feature. Intenational Journal of Pattern Recognition and Artificial Intelligence,.1994, 8,(5):1241-1258.
  • 5Tang Y Y, Tu L T, Li T,et M..Chinese Character Recognition with Stroke Features and Tree-structured Neural Network.Computer Processing of Chinese and Oriental Languages, 1994,8(2):17-36.
  • 6Mitsuru Ohkura, Yasuhiro Shimada, Mitsuru Shiono,et al On Discrimination of Handwritten Similar Kanji Characters. in Proceedings of Third International Conference on Document Analysis and Recognition, Canada, 1993:589-592.
  • 7李金宗.模式删导论.北京:高等教育出版社,1994.

共引文献23

同被引文献77

引证文献4

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部