期刊文献+

飞秒脉冲在共振介质中长距离演化过程研究 被引量:3

Evolution of Femtosecond Pulse in Resonant Atomic Medium with Long Distance
原文传递
导出
摘要 为研究飞秒脉冲在共振二能级原子介质中传播较长距离时的演化规律,用时域有限差分的方法数值模拟了5 fs脉冲载波与共振介质相互作用的麦克斯韦布洛赫方程。结果表明,5 fs脉冲的包络与载波的形状基本吻合,变化趋势大体一致,慢变振幅近似和旋转波近似不影响基本结论。在脉冲的谱宽远大于原子介质跃迁线形增宽的条件下,3.2π脉冲演化成2π双曲正割脉冲所经历的过程非常复杂,达到稳态所通过的空间长度大约是面积演化成稳态值所需要的长度的5×104倍。因此,在短距离的面积演化过程中,飞秒脉冲无法保持双曲正割的脉冲形状,只有经过很长的传播距离才能最终到达稳态,形成孤子解。同时,通过比较5 fs和50 fs脉冲的演化情况,得出结论,脉宽越短的脉冲达到稳态所经历的过程越复杂,需要通过的空间距离越长。 To study the evolution of femtosecond (ts) laser pulse in a long-distance two-level medium, the Maxwell-Bloch equations of 5 fs carrier interacting with two-level medium are numerically solved with use of finite-difference time domain procedure. It is found that the 5 fs pulse envelope, obtained within the slowly varying envelope approximation and rotating-wave approximation, agrees nicely with the carrier field. It is also found that it takes 50000 times longer distance for a pulse with an area of 3.2π to evolve into a stable symmetric hyperbolic-secant pulse than its area varying into a stable value. The evolution process is complicated, for the pulse's spectral width much larger than the atomic linewidth. As a result, an injected pulse with an area of ,3.2π could not maintain a shape of symmetric hyperbolic-secant during its area evolving into stable, and must propagate a very long distance to transform into a stable solitary wave. In addition, comparison of the results of the 5 fs and 50 fs pulse has demonstrated that the shorter the pulse is, the more intricate process, the longer distance it needs.
出处 《光学学报》 EI CAS CSCD 北大核心 2005年第9期1265-1270,共6页 Acta Optica Sinica
基金 国家自然科学基金(90201027 10374120) 国家重点基础研究特别项目(19990752000)资助课题
关键词 量子光学 光与物质相互作用 时域有限差分 麦克斯书-布洛赫方程 quantum optics light-matter interaction finite-difference time domain Maxwell-Bloch equations
  • 相关文献

参考文献6

二级参考文献9

  • 1F. Bilodeau,D. C. Johnson,S. Theriault.An all-fiber densewavelength-division multiplexer demultiplexer using photoimprinted Bragg gratings[].IEEE Photonics Technology Letters.1995
  • 2C. M. Sterke,N. G. Raphael Broderick,B. J. Eggleton.Nonlinear optics in fiber gratings[].Optical Fiber Technology.1996
  • 3G .P .Agrawal.NonlinearFiberOptics[]..1989
  • 4DaiWutao,GuoShuguang,FanYaxianetal.Externalcavitysemiconductorlaserswithgratingfeedbackforreal timeRamanspectrumanalyzer[].JournalofOptoelectronicsLaser.2001
  • 5TongZhi,JiangZhong’’ao,YanFengpingetal.DWDMallopticalnetworksandtheapplicationsofthefiberBragggratinginDWDMnetworks[].StudyonOpticalCommunications.2001
  • 6LiJianxin,XiaYuehui,ChenXueetal.TheoreticalanalysisandexperimentalinvestigationofdispersioncompensationintransmissionusinguniformfiberBragggratings[].ChineseJ Lasers.2001
  • 7LiJian xin,HuangYong qing,RenXiao min.Theformationconditionsofthefundamentalgratingsolitonsclosetothephotonicbandgapinfibergratings[].StudyonOpticalCommunications.2000
  • 8肖玲,林福成.共振原子蒸气中激光脉冲的时空特性[J].光学学报,1998,18(8):1001-1005. 被引量:5
  • 9蒋孟衡,林福成.强损耗介质中相干光脉冲的传输效应[J].物理学报,1990,39(12):1887-1892. 被引量:3

共引文献18

同被引文献43

  • 1王维江,周建英,肖万能.光在一维周期结构中的分布和局域化[J].光子学报,2005,34(7):1086-1089. 被引量:20
  • 2郭莹莹,余向阳.光学Bloch方程的数值解法[J].中山大学学报(自然科学版),2005,44(5):108-110. 被引量:12
  • 3Lamb G L Jr 1971 Rev. Mod. Phys. 43 99.
  • 4Eberly J H 1969 Phys. Rev. Lett. 22 760.
  • 5Leblond H, Sanchez F 2003 Phys. Rev. A 67 013804.
  • 6Kinsler P, New G H C 2004 Phys. Rev. A 69 013805.
  • 7Loiko Y, Serrat C 2006 Phys. Rev. A 73 063809.
  • 8Ziolkowski R W 1995 Phys. Rev. A 52 3082.
  • 9McCall S L, Hahn E L 1969 Phys. Rev. 183 457.
  • 10Hughes S 1998 Phys. Rev. Lett. 81 3363.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部