摘要
The principal component analysis (PCA), or the eigenfaces method, is a de facto standard in human face recognition. Numerous algorithms tried to generalize PCA in different aspects. More recently, a technique called two-dimensional PCA (2DPCA) was proposed to cut the computational cost of the standard PCA. Unlike PCA that treats images as vectors, 2DPCA views an image as a matrix. With a properly defined criterion, 2DPCA results in an eigenvalue problem which has a much lower dimensionality than that of PCA. In this paper, we show that 2DPCA is equivalent to a special case of an existing feature extraction method, i.e., the block-based PCA. Using the FERET database, extensive experimental results demonstrate that block-based PCA outperforms PCA on datasets that consist of relatively simple images for recognition, while PCA is more robust than 2DPCA in harder situations.
The principal component analysis (PCA), or the eigentaces method, is a de facto standard in human face recognition. Numerous algorithms tried to generalize PCA in different aspects. More recently, a technique called two-dimensional PCA (2DPCA) was proposed to cut the computational cost of the standard PCA. Unlike PCA that treats images as vectors, 2DPCA views an image as a matrix. With a properly defined criterion, 2DPCA results in an eigenvalue problem which has a much lower dimensionality than that of PCA. In this paper, we show that 2DPCA is equivalent to a special case of an existing feature extraction method, i.e., the block-based PCA. Using the FERET database, extensive experimental results demonstrate that block-based PCA outperforms PCA on datasets that consist of relatively simple images for recognition, while PCA is more robust than 2DPCA in harder situations.
出处
《自动化学报》
EI
CSCD
北大核心
2005年第5期782-787,共6页
Acta Automatica Sinica
基金
国家重点基础研究发展计划(973计划)