期刊文献+

关于二维主成分分析方法的研究 被引量:7

Is Two-dimensional PCA a New Technique?
下载PDF
导出
摘要 The principal component analysis (PCA), or the eigenfaces method, is a de facto standard in human face recognition. Numerous algorithms tried to generalize PCA in different aspects. More recently, a technique called two-dimensional PCA (2DPCA) was proposed to cut the computational cost of the standard PCA. Unlike PCA that treats images as vectors, 2DPCA views an image as a matrix. With a properly defined criterion, 2DPCA results in an eigenvalue problem which has a much lower dimensionality than that of PCA. In this paper, we show that 2DPCA is equivalent to a special case of an existing feature extraction method, i.e., the block-based PCA. Using the FERET database, extensive experimental results demonstrate that block-based PCA outperforms PCA on datasets that consist of relatively simple images for recognition, while PCA is more robust than 2DPCA in harder situations. The principal component analysis (PCA), or the eigentaces method, is a de facto standard in human face recognition. Numerous algorithms tried to generalize PCA in different aspects. More recently, a technique called two-dimensional PCA (2DPCA) was proposed to cut the computational cost of the standard PCA. Unlike PCA that treats images as vectors, 2DPCA views an image as a matrix. With a properly defined criterion, 2DPCA results in an eigenvalue problem which has a much lower dimensionality than that of PCA. In this paper, we show that 2DPCA is equivalent to a special case of an existing feature extraction method, i.e., the block-based PCA. Using the FERET database, extensive experimental results demonstrate that block-based PCA outperforms PCA on datasets that consist of relatively simple images for recognition, while PCA is more robust than 2DPCA in harder situations.
出处 《自动化学报》 EI CSCD 北大核心 2005年第5期782-787,共6页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)
关键词 表面识别 二元主成分 主元分析 PCA 技术标准 Face recognition, PCA. lwo-dimensional PCA, block-based PCA
  • 相关文献

参考文献19

  • 1Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103~108.
  • 2Jolliffe I T. Principal Component Analysis. New York, Springer-Verlag, 1986.
  • 3Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Maui Hawaii: IEEE Press, 1991. 586~591.
  • 4Belhumeur P N, Hespanha J P, Kriegrnan D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
  • 5Etemad K, Chellappa R. Discriminant analysis for recognition of human face images. Journal of Optical Society of Americia A, 1997, 14(8): 1724~1733.
  • 6Moghaddam B. Bayesian face recognition. Pattern Recognition, 2000, 13(11): 1771~1782.
  • 7Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution.Neural Computation, 1995, 7(6): 1129~1159.
  • 8Comon P. Independent Component analysis-a new concept? Signal Processing, 1994, 36:287~314.
  • 9Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299~1319.
  • 10Mika S, Ratsch G, Weston J, Scholkopf B, Muller K. Fisher discriminant analysis with kernels. Neural Networks for Signal Processing IX, Hu Y H, Larsen J, Wilson E, Douglas D, eds., 1999. 41~48.

同被引文献30

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部