摘要
考虑非线性矩阵方程X+A~*X^(-1)A=P,其中A是n阶非奇异复矩阵,P是n阶Hermite正定矩阵.本文给出了Hermite正定解和最大解的存在性以及获得最大解的一阶扰动界,改进了文[5,6]中的部分结论.
The Hermitian positive definite solutions of the matrix equation X+A^*(X^-1)A=P are studied, where A is an n×n nonsingular matrix and P is an n×n Hermitian positive definite matrix. The existence of the Hermitian positive definite solutions is proved and the first order perturbation bound of the maximal solution is presented, which improves the corresponding partial results in [5,6].
出处
《计算数学》
CSCD
北大核心
2005年第3期303-310,共8页
Mathematica Numerica Sinica
基金
广东省自然科学基金(31496)资助项目.