Woronowicz C代数交叉积的正则与协变表示
被引量:1
摘要
A是Woronowicz C*代数,G是作用于其上的离散群,主要证明了它们的交叉积代数A×αG的正则表示和协变表示都对应于乘法酉算子,同时证明了正则协变的C*代数也是一个对应乘法酉算子的Woronowicz C*代数,最后给出了C(SUq(2)×αZ)对应的乘法酉算子的一个明确表示.
出处
《中国科学(A辑)》
CSCD
北大核心
2005年第9期982-996,共15页
Science in China(Series A)
基金
国家自然科学基金(批准号:10301004
10171098)
烟台大学博士后基金(BX03814)
参考文献27
-
1Kac G. Ring groups and the duality principle. Proc Moscow Math Soc, 1963, 12:259-303.
-
2Enock M, Schwartz J M. Kac Algebras and Duality of Locally Compact Groups. Berlin: Springer-Verlag,1992.
-
3Kac G I, Paljutkin V G. An example of a ring group generated by Lie groups. Ukrain Math J, 1964, 16:99-105.
-
4Rieffel M. Some solvable quantum groups, operator algebras and topology. In: Arveson W B, Mishchenko A S, Putinar M, et al, eds. Pitman Research Notes Math, 270. Proc OATE2 Conf: Romania 1989, Burnt Mill. Harlow: Longman Scientific & Technical, 1992. 146-159.
-
5Drinfel'd V G. Quantum groups. In: Proc ICM-1986, Berkeley, gol I. Providence: Amer Math Soc, 1987.798-820.
-
6Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation. Lett Math Phys, 1985, 10:63-69.
-
7Jimbo M. A q-analogue of U(gl(.N+1)), Hecke algebra and the Yang-Baxter equation. Lett Math Phys,1986, 11:247-252.
-
8Drinfel'd V G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Soviet Math Dokl, 1983, 27:68-71.
-
9Woronowicz S L. Compact matrix pseudogroups. Commun Math Phys, 1987, 111:613-665.
-
10Baaj S, Skandalis G. Unitaires multiplicatifs er dualite pour les produits croises de C^*-algebres. Ann Sci Ec Norm Sup, 1993, 26:425-488.
同被引文献13
-
1Murray F J, von Neumann J. On rings of operators. Ann Math, 1936, 37:116-229.
-
2Murray F J, von Neumann J. On rings of operators IV. Ann Math, 1943, 44:716-808.
-
3Voiculescu D, Dykema K, Nica A. Free Random Variable. CRM Monogr Ser, vol. 1. Providence, RI: Amer Math Soc, 1992.
-
4Popa S. On Ozawa's property for free group factors. Int Math Res Notices, 2007, doi:10.1093/imrn/rnm036.
-
5Vaes S. An inner amenable group whose von Neumann algebra does not have property Gamma. arXiv: 0909.1485, 2009.
-
6Ioana A, Popa S, Vaes S. A class of superrigid group yon Neumann algebras, arXiv: 1007.1412vl, 2010.
-
7Connes A, Jones V F R. Property (T) for von Neumann algebras. Bull London Math Soc, 1985, 17:5742.
-
8Nicoara R, Popa S, Sasyk R. On II1 factors arising from 2-cocycles of w-rigid groups. J Funct Anal, 2007, 242:230-246.
-
9Turumaru T. Crossed products of operator algebras. Tohoku Math J, 1958, 10:335-365.
-
10Nakamura M, Takeda Z. On some elementary properties of the crossed product of von Neumann algebras. Proc Japan Acad Ser A Math Sci, 1958, 34:489-494.