期刊文献+

Woronowicz C代数交叉积的正则与协变表示 被引量:1

原文传递
导出
摘要 A是Woronowicz C*代数,G是作用于其上的离散群,主要证明了它们的交叉积代数A×αG的正则表示和协变表示都对应于乘法酉算子,同时证明了正则协变的C*代数也是一个对应乘法酉算子的Woronowicz C*代数,最后给出了C(SUq(2)×αZ)对应的乘法酉算子的一个明确表示.
出处 《中国科学(A辑)》 CSCD 北大核心 2005年第9期982-996,共15页 Science in China(Series A)
基金 国家自然科学基金(批准号:10301004 10171098) 烟台大学博士后基金(BX03814)
  • 相关文献

参考文献27

  • 1Kac G. Ring groups and the duality principle. Proc Moscow Math Soc, 1963, 12:259-303.
  • 2Enock M, Schwartz J M. Kac Algebras and Duality of Locally Compact Groups. Berlin: Springer-Verlag,1992.
  • 3Kac G I, Paljutkin V G. An example of a ring group generated by Lie groups. Ukrain Math J, 1964, 16:99-105.
  • 4Rieffel M. Some solvable quantum groups, operator algebras and topology. In: Arveson W B, Mishchenko A S, Putinar M, et al, eds. Pitman Research Notes Math, 270. Proc OATE2 Conf: Romania 1989, Burnt Mill. Harlow: Longman Scientific & Technical, 1992. 146-159.
  • 5Drinfel'd V G. Quantum groups. In: Proc ICM-1986, Berkeley, gol I. Providence: Amer Math Soc, 1987.798-820.
  • 6Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation. Lett Math Phys, 1985, 10:63-69.
  • 7Jimbo M. A q-analogue of U(gl(.N+1)), Hecke algebra and the Yang-Baxter equation. Lett Math Phys,1986, 11:247-252.
  • 8Drinfel'd V G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Soviet Math Dokl, 1983, 27:68-71.
  • 9Woronowicz S L. Compact matrix pseudogroups. Commun Math Phys, 1987, 111:613-665.
  • 10Baaj S, Skandalis G. Unitaires multiplicatifs er dualite pour les produits croises de C^*-algebres. Ann Sci Ec Norm Sup, 1993, 26:425-488.

同被引文献13

  • 1Murray F J, von Neumann J. On rings of operators. Ann Math, 1936, 37:116-229.
  • 2Murray F J, von Neumann J. On rings of operators IV. Ann Math, 1943, 44:716-808.
  • 3Voiculescu D, Dykema K, Nica A. Free Random Variable. CRM Monogr Ser, vol. 1. Providence, RI: Amer Math Soc, 1992.
  • 4Popa S. On Ozawa's property for free group factors. Int Math Res Notices, 2007, doi:10.1093/imrn/rnm036.
  • 5Vaes S. An inner amenable group whose von Neumann algebra does not have property Gamma. arXiv: 0909.1485, 2009.
  • 6Ioana A, Popa S, Vaes S. A class of superrigid group yon Neumann algebras, arXiv: 1007.1412vl, 2010.
  • 7Connes A, Jones V F R. Property (T) for von Neumann algebras. Bull London Math Soc, 1985, 17:5742.
  • 8Nicoara R, Popa S, Sasyk R. On II1 factors arising from 2-cocycles of w-rigid groups. J Funct Anal, 2007, 242:230-246.
  • 9Turumaru T. Crossed products of operator algebras. Tohoku Math J, 1958, 10:335-365.
  • 10Nakamura M, Takeda Z. On some elementary properties of the crossed product of von Neumann algebras. Proc Japan Acad Ser A Math Sci, 1958, 34:489-494.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部