无穷次可重整二次多项式的共形测度
摘要
利用无穷次可重整化二次多项式三维拼图的技巧,证明了有复界无分支的无穷次可重整化二次多项式共形测度的遍历性.
出处
《中国科学(A辑)》
CSCD
北大核心
2005年第9期1019-1027,共9页
Science in China(Series A)
基金
中国国家自然科学基金(批准号:10125103)
国家重点基础研究
美国国家自然科学基金
PSCCUNY研究基金及中国科学院"百人计划"基金
参考文献15
-
1Milnor J. Dynamics in One Complex Variable: Introductory Lectures. Friedr Vieweg: Sohn Braunschweig, 1999.
-
2Carleson L, Gamelin T. Complex Dynamics. Berlin, Heidelberg: Springer-Verlag, 1993.
-
3Beardon A F. Iteration of Rational Maps. New York: Springer-Verlag, 1991.
-
4Sullivan D. Conformal dynamical systems geometric dynamics. In: Lecture Notes in Math, Vol 1007.Berlin. New York: Springer, 1983. 2081-2099.
-
5Denker N, Mauldin D, Nitecki Z, et al. Conformal measures for rational maps revised. Fundementa Math,1998, 157:161-173.
-
6Denker N, Urbanski M. On the existence of conformal measures. Trans Amer Math Soc, 1991, 328:563-587.
-
7Jiang Y. Infinitely renormalizable quadratic polynomials. Trans Amer Math Soc, 2000, 352:5077-5091.
-
8Jiang Y. Renormalization and Geometry, in One-Dimensional and Complex Dynamics. Advanced Series in Nonlinear Dynamics. Singapore-New Jersey-London-Hong Kong: World Scientific Publishing Co Inc,1996.
-
9Prado E. Ergodicity of conformal measures for unimodal polynomials. Conformal Geometry and Dynamics 1998, 2:29-44.
-
10Lyubich M. Dynamics of quadratic polynomials,Ⅰ-Ⅱ. Acta Math, 1997, 178:185-297.
-
1王春敏.混合的随机共形测度的多重分形分析[J].佳木斯教育学院学报,2013(5):475-477.
-
2肖鹏.随机自共形测度的无穷阶量子化维数[J].数学学习与研究,2014(11):114-114.
-
3王春敏.随机自共形测度关于几何均值误差的量子化维数[J].镇江高专学报,2015,28(3):61-65.
-
4ZHUANG Wei.On the Continuity of Julia Sets and Hausdorff Dimension of N CP and Parabolic Maps[J].Chinese Quarterly Journal of Mathematics,2007,22(4):592-596. 被引量:1
-
5代数学[J].中国学术期刊文摘,2006,12(9):9-9.
-
6肖艳姣,刘黎平.新一代天气雷达网资料的三维格点化及拼图方法研究[J].气象学报,2006,64(5):647-657. 被引量:153