摘要
考虑各向异性Sobolev类上的保向形式的Jacobi行列式的可积性,给出了保证Jacobi行列式可积的一个充分条件,这可看作是Iwaniec和Sbordone结果的优化.
出处
《中国科学(A辑)》
CSCD
北大核心
2005年第9期1060-1070,共11页
Science in China(Series A)
基金
国家自然科学基金(批准号:10471149)
数学天元青年基金(批准号:A0324610)
河北省教育厅博士基金(批准号:B2004103)
参考文献15
-
1Brezis H, Fusco N. Sbordone C. Integrability for the Jacobian of orientation preserving mappings. J Funct Anal, 1993. 115:425-431.
-
2Greco L, Iwaniec T. New inequalities for the Jacobian. Ann Inst H Poincare. 1994. 11 (1): 17-35.
-
3Greco L, Iwaniec T, Moscariello G. Limits of the improved integrability of the volume forms. Indiana Univ Math J, 1995, 44:305-339.
-
4Iwaniec T. Nonlinear commutators and Jacobians. J Fourier Anal Appl, 1997, 3(Special Issue): 775-796.
-
5Iwaniec T, Onninen J. H^1-estimates of Jacobian by subdeterminants. Math Ann, 2002, 324:341-358.
-
6Iwaniec T, Sbordone C. On the integrability of the Jacobian under minimal hypothesis. Arch Rat Mech Anal, 1992, 119:129-143.
-
7Iwaniec T, Verde A. A study of Jacobians in Hardy-Orlicz spaces. Proc Roy Soc Edinburgh, 1999, 129(3): 539-570.
-
8Iwaniec T, Verde A. On the operator L(f) = f log|f|. J Funct Anal, 1999, 169:391-420.
-
9Iwaniec T, Martin G. Geometric Function Theory and Nonlinear Analysis. Oxford: Clarendon Press. 2001.
-
10Ball J B. Convexity conditions and existence theorem in nonlinear elasticity. Arch Rat Mech Anal, 1977.63:337-403.
同被引文献12
-
1IWANIEC T, MARTIN G. Geometric function theory and nonlinear analysis[ M]. Oxford: Clarendon Press, 2001.
-
2IWANIEC T, MARTIN G. Quasiregular mappings in even dimensions[ J]. Acta Math, 1993, 170 : 29 - 81.
-
3IWANIEC T. p -harmonic tensors and quasiregular mappings[J]. Ann of Math, 1992, 136:586 -624.
-
4PEREZ C. Two weighted norm inequalities for Riesz potentials and uniform LP-weighted Sobolev inequalities [J]. Indiana Univ Math J, 1990, 39: 31-42.
-
5MOSCARIELLO G. Weighted Sobolev inequalities associated with quasiregular mappings [J]. Nonlinearity, 1993, 6:49 - 55.
-
6高红亚,顾广泽,吏明宇.退化弱拟正则映射的Caccioppoli不等式[J].系统科学与数学,2008,28(5):548-553. 被引量:1
-
7高红亚,江宁.A-调和函数高阶可积性的简单证明[J].河北大学学报(自然科学版),2009,29(1):8-9. 被引量:2
-
8郑神州,方爱农.关于退化的拟正则映射[J].数学年刊(A辑),1998,19A(6):741-748. 被引量:7
-
9高红亚,段靖.障碍问题局部可积性的一个注记[J].黑龙江大学自然科学学报,2010,27(1):13-15. 被引量:2
-
10高红亚.弱拟正则映射的若干性质[J].数学学报(中文版),2002,45(1):191-196. 被引量:6
-
1马万,王兴华.多元积分方程自适应解法的优化[J].数学学报(中文版),2005,48(3):617-620.
-
2叶培新.QUANTUM COMPLEXITY OF SOBOLEV IMBEDDINGS[J].Acta Mathematica Scientia,2012,32(3):1102-1114.
-
3Pei Xin YE.Lower Bound for Quantum Integration Error on Anisotropic Sobolev Classes[J].Acta Mathematica Sinica,English Series,2010,26(4):669-678.
-
4许贵桥,杜英芳,赵华杰,于德胜.各向异性Sobolev类的多元多项式样条插值逼近[J].天津师范大学学报(自然科学版),2002,22(4):25-27. 被引量:1
-
5连莉霞.多元Sobolev关于L_(qp)(R^d)下的平均线性宽度[J].工科数学,2001,17(2):11-13.
-
6蒋艳杰.各向异性Sobolev类的表现与逼近[J].河北大学学报(自然科学版),2008,28(4):357-359.
-
7叶培新.确定性与随机化框架下的Sobolev类上的嵌入与积分的复杂性[J].中国科学:数学,2011,41(2):165-180.
-
8叶培新,胡晓菲.QUANTUM COMPLEXITY OF THE APPROXIMATION FOR THE CLASSES B(W_p^r([0,1]~d)) AND B(H_p^r([0,1]~d))[J].Acta Mathematica Scientia,2010,30(5):1808-1818.
-
9杨柱元,杨宗文,刘永平.各向异性Sobolev及Besov类的平均单边宽度[J].数学学报(中文版),2007,50(5):1177-1184.