期刊文献+

扰动酉系综的1-级相关函数(英文) 被引量:1

1-Level Correlation Functions of Disturbed Unitary Ensembles
下载PDF
导出
摘要 在随机矩阵理论中,1 级相关函数R1nβ(x)(β一般称为Dyson指标)可以用来刻画在x附近能够发现能级的分布密度。直到现在,它的极限行为仍然受到许多数学家和物理学家的关注。在酉系综情形下(即β=2),1 级相关函数R1n2(x)与经典多项式理论中的权函数μ(x)密切相关。文中,为叙述上简单起见,只考虑Gauss酉系综的情形。可以发现,在弱收敛意义下,给权函数μ(x)以“好的”而非平凡的乘积因子,1 级相关函数R1n2(x)的极限行为不受干扰。 In the random matrix theory, the 1-level correlation functions R^1nβ (x) (β is generally called Dyson's index) can be explained as the distribution density of energy levels which can be found nearby x. As yet, its limit behavior is still remarkably noticed by many mathematicians and physicists. In the case of unitary ensemble (i. e.β = 2), the 1-level correlation functions R^1 n2 (x) is closely related to the weight function μ (x) in the classical orthogonal polynomial theory. For the simplication of statement, only the Gaussian unitary ensemble case is considered. The authors find that in weak sense, the limit behavior of R^1n2 (x)is not disturbed by appending a “good” nontrivial multiplicative factor to μ (x).
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第5期671-678,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
关键词 Gauss酉系综 相关函数 Laguerre多项式 Gaussian unitary ensembles correlation functions moments laguerre polynomials
  • 相关文献

参考文献7

  • 1Mehta M L. Random Matrices. 2nd Edition, San Diego: Academic Press, 1991.
  • 2Nagao T, Wadati M. Correlation Functions of Random Matrix Ensembles Related to Classical Orthogonal Polynomials.Journal of the Physical Society of Japan, 1991, 60( 10), 3 298-3 322.
  • 3Wigner E P. Characteristic Vectors of Bordered Matrices with Infinite Dimensions. Annals of Mathematics, 1955,62(3) : 548-564.
  • 4Wigner E P. On the Distribution of the Roots of Certain Symmetric Matrices. Annals of Mathematics, 1955, 67(2):325-327.
  • 5Haagerup U, Thorbjornsen S. Random Matrices with Complex Gaussian Entries. Expositiones Math, 2000, 21:293-337.
  • 6Ledoux M. Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials, the Continuous Case. Elect Journal in Probability, 2004, 9:177-208.
  • 7Szegtl G. Orthogonal Polynomials. New York: AMS Colloquium Publications, 1939.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部