期刊文献+

TiN/Si_3N_4纳米多层膜的生长结构与超硬效应 被引量:13

Super-Hardness and Microstructures of TiN/Si_3N_4 Nano-Multilayers
下载PDF
导出
摘要 采用磁控溅射方法制备了一系列不同Si3N4和TiN层厚的TiN/Si3N4纳米多层膜,采用X射线衍射、高分辨电子显微分析和微力学探针表征了薄膜的微结构和力学性能,研究了Si3N4和TiN层厚对多层膜生长结构和力学性能的影响。结果表明:当Si3N4层厚小于0.7 nm时,原为非晶的Si3N4在TiN的模板作用下晶化并与之形成共格外延生长的柱状晶,使TiN/Si3N4多层膜产生硬度和弹性模量异常升高的超硬效应。最高硬度和弹性模量分别为34.0 GPa和353.5 GPa。当其厚度大于1.3 nm时,Si3N4呈现非晶态,阻断了TiN的外延生长,多层膜的力学性能明显降低。此外,TiN层厚的增加也会对TiN/Si3N4多层膜的生长结构和力学性能造成影响,随着TiN层厚的增加,多层膜的硬度和弹性模量缓慢下降。 Nano TiN and Si3N4 layers with different thickness were alternatively deposited on Si substrates by magnetron sputtering. The TiN/Si3N4 nano-multilayers were characterized with X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and nano-indentation.The results show that the layer thickness of Si3N4 and TiN significantly affects the microstructures and mechanical properties of the multilayer. For example, when Si3N4 layer thickness is less than 0. 7 nm, TiN layer induces an epitaxial growth and re-crystallization of amorphous Si3N4,which results in considerable increases of the hardness and elastic modulus of the multi-layer, whose maximum values can reach 34.0 and 353.5 GPa, respectively. When Si3N4 layer is thicker than 1.3 nm, only amorphous Si3N4 was observed on top of the TiN layer and the mechanical properties of the mulfilayer markedly deteriofiates. As the TiN layer thickness increases, the hardness and elastic modulus of the multilayer slowly decreases.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2005年第4期263-267,274,共6页 Chinese Journal of Vacuum Science and Technology
基金 上海市纳米专项基金(0352nm084)
关键词 TiN/Si3N4纳米多层膜 Si3N4晶化 外延生长 超硬效应 TiN/Si3N4 nanomultilayers, Crystallization of Si3N4, Epitaxial growth, Superhardness effect
  • 相关文献

参考文献24

  • 1Helmersson U,Todorova S,Barnett S A et al.Growth of single-crystal TiN/VN strained-lay superlattice with extremely high mechanical hardness.J Appl Phys,1987,62:481~484.
  • 2Shinn M,Hultman L,Barnett S A.Growth,structure and microhardness of epitaxial TiN/NbN superlattices.J Mater Res,1992,7(4):901~911.
  • 3Sproul W D.New routes in the preparation of mechanically hard film.Science,1996,273:889~892.
  • 4Yashar P,Barnett S A,Rechner J et al.Structure and mechanical properties of polycrystalline CrN/TiN superlattices.J Vac Sci Technol A,1998,16:2913~2918.
  • 5Geyang L,Zenghu H,Jiawan T et al.Alternating stress field and superhardness effect in TiN/NbN superlattice films.J Vac Sci Technol A,2002,20:674~677.
  • 6Nordin M,Larsson M,Hogmark S.Mechanical and tribological properties of multilayered PVD TiN/CrN,TiN/MoN,TiN/NbN and TiN/TaN coatings on cemented carbide.Surf Coat Technol,1998,106:234~241.
  • 7Vepek S.The search for novel,superhard materials.J Vac Sci Technol A,1999,17:2401~2420.
  • 8Yashar P C,Sproul W D.Nanometer scale multilayered hard coatings.Vacuum,1999,55:179~190.
  • 9Setoyama M,Nakayama A,Tanaka M et al.Formation of cubic-A1N in TiN/A1N superlattice.Surf Coat Technol,1996,86-87:225~230.
  • 10Kim I W,Quan Li,Marks L D et al.Critical thickness for transformation of epitaxially stabilized cubic A1N in superlattices.Appl Phys Lett,2001,78:892~894.

同被引文献171

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部