期刊文献+

基于复数小波变换增强带噪图像的空间自适应方法 被引量:10

A Complex Wavelet Based Spatially Adaptive Method for Noised Image Enhancement
下载PDF
导出
摘要 针对目前的多尺度增强方法一般很难实现抑制噪声和凸显细节间有效均衡的问题,提出一种基于复数小波变换增强图像方法,充分利用复数小波兼具平移不变性和方向选择性的优势,首先通过相邻两层小波系数的相关性来有效区分噪声和图像边缘,并根据各层小波系数的分布设置局部阈值抑制噪声;在此基础上,自适应地选取增强函数来增强较弱的细节并保护原图像中的清晰边缘不产生失真.实验结果表明,运用该算法增强带噪图像可以在较好地抑制噪声的同时,显著地放大细节特征. A new image enhancement method aimed at optimizing contrast of image features while minimizing image noise is proposed in this paper based on complex wavelet transform. The denoising is accomplished by using the correlations between different stages of wavelet coefficients, and then the subtle features are retained while noise is efficiently suppressed. Image enhancement is realized by a scale adaptive strategy that can emphasize features with low contrast while protecting the strong contrast features from distortions by over enhancement. Results of experiments show that this method offers significantly improved performance over the conventional and previously reported multi-scale enhancement algorithms.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第9期1911-1916,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(1017109) 国家博士学科点专项基金(20049998006)
关键词 罔像增强 复数小波 Laplace塔式分解 二进小波变换 image enhancement complex wavelet Laplacian pyramid decomposition dyadic wavelet transform
  • 相关文献

参考文献14

  • 1Gonzales R C, Woods R E. Digital Image Processing[M]. New York: Addison-Wesley, 1995.
  • 2Fischl B, Schwartz E L. Learned adaptive nonlinear filtering for nonlinear diffusion approximation in image processing[A]. In: Proceedings of the 13th International Conference of Pattern Recognition, Vienna, 1996, 4: 276~280.
  • 3Greenspan H, Anderson C H, Akber S. Image enhancement by nonlinear extrapolation infrequency space[J]. IEEE Transactions on Image Processing, 2000, 9(6): 1035~1048.
  • 4Sakellaropoulos P, Costaridou L, Panayiotakis G. A wavelet-based spatially adaptive method for mammographic contrast enhancement[J]. Physics in Medicine Biology, 2003, 48(6): 783~803.
  • 5Mallat S. A Wavelet Tour of Image Processing[M]. New York: Academic Press, 1997.
  • 6Dippel S, Stahl M, Wiemker R, et al. Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform[J]. IEEE Transactions on Medical Imaging, 2002, 21(4): 343~353.
  • 7Strarck J L, Murtagh F, Candes E J, et al. Gray and color image contrast enhancement by the curvelet transform[J]. IEEE Transactions on Image Processing, 2003, 12(6): 706~717.
  • 8Donoho D L, Duncan M R. Digital curvelet transform: Strategy, implementation and experiments[A]. In: Proceedings of SPIE, Oriando, 2000. 4056: 12~29.
  • 9Kingsbury N. Image processing with complex wavelets[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 1999, 357(1760): 2543~2560.
  • 10Kingsbury N. Complex wavelets for shift invariant analysis and filtering of signals[J]. Applied and Computational Harmonic, 2001, 10(3): 234~253.

同被引文献78

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部