期刊文献+

基于混淆矩阵和Fisher准则构造层次化分类器 被引量:27

Construction of Hierarchical Classifiers Based on the Confusion Matrix and Fisher’s Principle
下载PDF
导出
摘要 构造层次化分类器的首要环节是确定各个子分类器的层属关系及其内部组成.从模式间的相似关系入手,实现了一种自动产生层次化分类器结构的方法.为了描述模式间的相似关系,首先提出利用混淆矩阵度量相似性的思路与方法,避免了现有常用度量方法计算量大、假设条件难以成立的不足.进而遵循Fisher准则,设计并实现了模式相似关系分析机(patterns’similarityrelationshipanalyzingmachine,简称PSRAM),将有师指派和无师自组两种常用的模式重组方法有机结合起来,自适应地产生层次化分类器结构.大量测试证实,该方法有效、实用,可以显著地提高分类器的识别性能和稳健性. Determination of the hierarchical relationship and the objective patterns of sub-classifiers is a primary problem in the construction of a hierarchical classifier. In this paper, a method focusing on the similarities between patterns is proposed to generate a hierarchical structure automatically. Firstly, a similarity measurement utilizing the confusion matrix is advanced to avoid the drawbacks of the traditional measurements, such as high computation costs and invalidity of preliminary conditions. Then abiding by Fisher's Principle, a Patterns' Similarity Relationship Analyzing Machine (PSRAM), which is integrated with the supervised and unsupervised pattern recombination methods, is designed to adaptively construct the structure of a hierarchical classifier. Various tests are testified that the proposed method is effective and practical, and it can prominently improve the performance and robustness of the hierarchical classifier.
出处 《软件学报》 EI CSCD 北大核心 2005年第9期1560-1567,共8页 Journal of Software
关键词 层次化分类器 相似性度量 模式相似关系分析机 FISHER准则 自适应模式组合 hierarchical classifier similarity measurement patterns' similarity relationship analysis machine Fisher's principle adaptive pattern combination
  • 相关文献

参考文献10

  • 1宋锐,张静,夏胜平,郁文贤.一种基于BP神经网络群的自适应分类方法及其应用[J].电子学报,2001,29(z1):1950-1953. 被引量:19
  • 2Ruda H, Snorrason M, Shue D. Framework for automatic target recognition optimization. No.R96451, Cambridge: Charles River Analytics, 1997.
  • 3Jain AK, Duin RPW, Mao JC. Statistical pattern recognition: A review. 1999. http://citeseer.ist.psu.edu/jain99statistical.html.
  • 4Song R, Ji H, Xia SP, Hu WD, Yu WX. Hierarchical modular structure for automatic target recognition systems. In: Shen J,Pankanti S, Wang RS, eds. Proc. of the SPIE, Vol 4554, Object Detection, Classification and Tracking Technologies. Bellingham:SPIE, 2001.57-61.
  • 5张静.[D].长沙:国防科学技术大学,2004.
  • 6Logan JD. Applied Mathematics. 2nd ed., Hoboken: Wiley-Interscience, 1996.
  • 7Rosen KH. Discrete Mathematics and Its Applications. 5th ed., Berkshire: McGraw-Hill Science/Engineering/Math, 2003.
  • 8Ripley BD. Pattern Recognition and Neural Networks. London: Cambridge University Press, 1996.
  • 9Vapnik VN. The Nature of Statistical Learning Theory. New York: Springcr-Vcrlag, 1995.
  • 10Zhang J, Song R, Yu WX, Xia SP, Hu WD. Visual effects based feature extraction for dynamic radar target echo series. In: Yuan BZ, et al., eds. Proc. of the 7th Int'l Conf. on Signal Processing (ICSP 2004). Beijing: Publishing House of Electronics Industry,2004.2111-2115.

二级参考文献6

  • 1王继成.一个基于神经树结构的模式分类系统[J].电子学报,1997,25(7):107-110. 被引量:1
  • 2[1]Schurmann,J.Pattern Classification,A Unified Way of Statistical and Neural Approaches [M].New York:Wiley,1996.
  • 3[2]Polycarpon M M Ioannou P A.Learning and convergence analysis of neural-type structured networks [J].IEEE Trans.Neural Networks,1992,NN-3(1):39-50.
  • 4[3]Sauger T D.A tree-structured adaptive network for function approximation in high dimensional spaces [J].IEEE Trans.Neural Networks,NN-2:285-293.
  • 5[5]Harald R,Magnus S,David S.Framework for automatic target recognition optimization [R].Charles River Analytics Report.No.R96451,1997(10) :4-10.
  • 6[6]Guo Gui-rong,YU Wen-xian and ZHANG Wei.An intelligence recognition method of ship targets [J].Fuzzy Sets and Systems,1990,36:27-36.

共引文献18

同被引文献284

引证文献27

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部