期刊文献+

多机器人对抗系统仿真中的对手建模 被引量:7

Opponent Modeling in Adversarial Multi-robot System Simulation
下载PDF
导出
摘要 用贝叶斯网络来解决多机器人对抗系统的对手建模问题,建立了用于一类多机器人对抗系统对手规划识别的混合贝叶斯网络。将足球机器人赛场进行分区,使用贝叶斯网络来分析和判断对手的意图为将球踢向哪个分区,实现足球机器人系统的对抗目标。建立了基于对手建模的策略仿真系统,实验结果表明了该策略仿真系统的有效性。 Bayesian network theory was used to model opponent's plan in a multi-robot confi'ontation system. A hybrid Bayesian network was constructed to identify the opponent's plan. Whole game field for soccer robots will be divided into some small areas and the Bayesian network analyzes and identifies to which area the opponent will kick the ball to implement final antagonism target of the soccer robot system. A strategy simulation system based on the opponent's plan modeling was constructed and experiment results show it efficient.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第9期2138-2141,共4页 Journal of System Simulation
基金 国家863计划项目(2001AA422270)
关键词 足球机器人 多机器人对抗 对手建模 贝叶斯网络 策略系统仿真 soccer robot multi robot competition opponent modeling Bayesian network strategy simulation system
  • 相关文献

参考文献10

二级参考文献33

  • 1蔡自兴.智能控制及其应用[M].中南工业大学出版社,1998,8..
  • 2[1]Itsuki Noda.Soccer Server:a simulator of Robocup [EB/OL].Noda·etl.go.jp.April 2000.
  • 3[2]Hiroaki Kitano,Minoru Asada,Yasuo Kuniyoshi,Itsuki Noda,Eiichi Osawa.Robocup: The Robot World Cup initiative [A].Working Note of IJCAI Workshop: Entertainment and AI/Alife [C],Aug.1995.19-24.
  • 4[3]MSDN Library [Z].Microsoft Corp.1995-1999
  • 5[4]Andrew S Tanenbaum,Albert S Woodhull.Operation Systems: Design and Implementation [M].Prentice Hall,Inc.(清华大学出版社,影印版,1997).
  • 6Pearl J. Probabilistic Reasaning in Intelligent Systems: Networks of Plausible Inference.San Mateo, CA, Morgan Kaufmann, 1988.
  • 7Pearl J. On Evidence Reasoning in a Hierarchy of Hypotheses [ J ].Artificial Intelligence, 1986, 28: 9-15.
  • 8Heckerman D. A Bayesian Approach for Leandng Causal Networks[C].Proceedings of the 11th Conference of Uncertainty in Artificial Intelligence, San Francisco, 1995. 285-295.
  • 9Kirillov V P. Constructive Stochastic Temporal Reasoning in Situation Assessment[J].IEEE. Trans. on System, Man and Cybemetics, 1994,21(7): 1099-1113.
  • 10Zacharias G, Miao A, Illgen C, et al. SAMPLE: Situation Awareness Model for Pilot in the Loop Evaluation[C]. Proceeding of the First Annual Symposium on Situation Awareness in the Tactical Air Environment, Patuxent River, MD(June), 1996.

共引文献107

同被引文献44

  • 1黄柯棣,刘宝宏,黄健,曹星平,尹全军,郭刚,张琦,张传富,刘云生.作战仿真技术综述[J].系统仿真学报,2004,16(9):1887-1895. 被引量:107
  • 2郭小宾,王壮,胡卫东.基于贝叶斯网络的目标融合识别方法研究[J].系统仿真学报,2005,17(11):2713-2716. 被引量:18
  • 3李波,高晓光.基于贝叶斯网络的机载武器系统综合决策[J].系统仿真学报,2007,19(4):886-889. 被引量:19
  • 4Andrieu C, de Freitas N, Doucet A, et al. An Introduction to MCMC for Machine Learning [J]. Machine Learning (S1573-0565), 2003, 50: 5-43.
  • 5Hongmei Chi. Scrambled Quasirandom Sequances and Their Applications [D]. USA: The Florida State University, 2004.
  • 6Hickemell F J. The Mean Square Discrepancy of Randomized Nets [J]. ACM Trans Modeling and Computer Simulation (S1049-3301), 1996, 6: 274-296.
  • 7Owen A B. Randomly Permuted (t,m, s)-Nets and (t, s)-Sequences in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing [C]// Lecture Notes in Statistics. Germany: Springer- Verlag, 1995, 106: 299-317.
  • 8Christiane L. Randomized Quasi-Monte Carlo: A Tool for Improving the Efficiency of Simulations in Finance [C]// Proceedings of the 2004 Winter Simulation Conference, Washington, D.C., USA, 2004. Piscataway NJ, USA: IEEE, 2004, 2: 1565-1573.
  • 9Kolkiewicz A W. Applications of Scrambled Low Discrepancy Sequences to Exotic Options [C]// Proceedings of 9th International AFIR Colloquium, Tokyo, 1999. Tokyo, Japan: Kluwer Academic, 1999, 2: 885-918.
  • 10Xu Rui, Donald Wunsch. Survey of clustering algorithms [J]. IEEE Trans on Neural Networks,2005,16(3):645-678.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部