期刊文献+

基于自适应评价函数的独立成分分析算法

Adaptive Algorithm for Independent Component Analysis with Flexible Score Functions
下载PDF
导出
摘要 简要介绍独立成分分析(ICA)及其模型,然后在极大似然估计的框架下,基于两类参数模型—Gaussian混合密度模型和Pearson系统模型,研究了具有对称分布(包括超高斯分布与亚高斯分布)和非对称分布源混合信号的盲分离问题,给出了一种有效的基于灵活评价函数的ICA新算法,该算法在一定意义上实现了对源信号概率分布的真正全“盲”。与原有的ICA算法相比,该算法具有更广泛应用范围。模拟实验验证了算法的有效性。 After giving a brief introduction about the idea of the model of Independent Component Analysis (ICA), an algorithm for ICA without any knowledge of their probability distributions was provided. It was achieved under a maximum likelihood framework by considering Gaussian parametric density mixture model and Pearson system model. As a result, an explicit ICA algorithm with flexible score functions to various marginal densities was obtained. Simulation result shows that the proposed algorithm is able to separate a wild range of source signals, including sub-Gaussian and super-Gaussian sources, symmetric and asymmetric sources.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第9期2222-2225,共4页 Journal of System Simulation
基金 国家自然科学基金(60472062) 湖北省自然科学基金(2004ABA038)
关键词 独立成分分析 极大似然估计 自然梯度 评价函数 independent component analysis maximum likelihood estimation natural gradient score function
  • 相关文献

参考文献9

  • 1P Comon. Independent component analysis, A new concept? [J]. Signal Processing, 1994, 36(3): 287-314.
  • 2J F Cardoso, B.Laheld. Equivariant adaptive source separation[J]. IEEE Trans. on Signal Processing, 1996, 44 (12): 3017-3030.
  • 3S Amari. Natural Gradient Works Efficiently in Learning[J]. Neural Computation, 1998, 10(1): 251-276.
  • 4L Xu, I.Jordan. On convergence properties of the EM algorithm for Gaussian mixture[J]. Neural computation, 1996, 8(1): 129-151.
  • 5T W Lee, M Girolami, T Sejnowski. Independent component analysis using an extend infomax algorithm for mixed sub-Gaussissn and super-Gaussian sources[J]. Neural Computation, 1998, 11(2): 417- 441.
  • 6张贤达,朱孝龙,保铮.Grading learning for blind source separation[J].Science in China(Series F),2003,46(1):31-44. 被引量:14
  • 7J Cao, N Murata. A stable and robust ICA algorithm based on t-distribution and generalized Gaussian distribution models[J]. Neural Networks Signal Processing, IEEE Press, 1999, 2 (9): 719-722.
  • 8J Karvanen, V Koivunen. Blind Separation Methods Based on Pearson system and its Extensions[J]. Signal Processing , 2002, 82(4): 663-673.
  • 9C E Priebe. Adaptive mixtures[J]. Journal of the American Statistical Association, 1994, 89(427): 796- 806.

二级参考文献22

  • 1[1]Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks,1999, 10(3): 626-634.
  • 2[2]Giannakopoulos, V., Comparison of adaptive independent component analysis algorithms, Available at http://www.cis.hut. fi/~xgiannak/.
  • 3[3]Bell, A. J., Sejnowski, T. J., An information-maximization approach to blind separation and blind deconvolution, Neural Computations, 1995, 7:1129-1159.
  • 4[4]Karhunen, J., Joutsensalo, J., Representation and separation of signals using nonlinear PCA type learning, Neural Net works, 1994, 7: 113-127.
  • 5[5]Karhunen, J., Pajunen, P., Oja, E., The nonlinear PCA criterion in blind source separation: Relations with other approaches, Neural Computing, 1998, 22: 5-20.
  • 6[6]Comon, P., Independent component analysis, a new concept? Signal Processing, 1994, 36:287-314.
  • 7[7]Pham, D. T., Blind separation of instantaneous mixtures of sources via an independent component analysis, IEEE Trans. Signal Processing, 1996, 44: 2768-2779.
  • 8[8]Cardoso, J. F., Laheld, B., Equivariant adaptive source separation, IEEE Trans. Signal Processing, 1996, 44: 3017-3030.
  • 9[9]Yang, H. H., Amari, S., Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mu tual information, Neural Computations, 1997, 9:1457-1482.
  • 10[10]Yang, H. H., Serial updating rule for blind separation derived from the method of scoring, IEEE Trans. Signal Processing, 1999, 47: 2279-2285.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部