期刊文献+

带有模糊集值映象的一般混合拟变分包含的扰动近似点算法(英文) 被引量:6

Perturbed Proximal Point Algorithm for General Quasi-Variational Inclusions with Fuzzy Set-Valued Mappings
下载PDF
导出
摘要 本文引入一类新的带有模糊集值映象的一般混合拟变分包.在Hilbert空间中,利用极大η-单调映象的预解算子技巧,建立了这类变分包与不动点的等价性.利用这种等价性,构造了一些新的扰动近似点算法,并证明了由此算法所产生的迭代序列的收敛性.这些定理改进,统一和推广了近期文献中许多重要结果. The purpose of this paper is to introduce a new class of general mixed quasivariational inclusions with fuzzy set-valued mappings. We establish the equivalence between this class of variational inclusions and the fixed point problems by employing the resolvent operator technique for maximal η-monotone mapping in Hilbert spaces. Using this equivalence, we construct some new perturbed proximal point algorithms and prove the convergence of iterative sequences generated by the algorithms. These theorems improve, unify and generalize many important results in recent literature.
作者 金茂明
出处 《运筹学学报》 CSCD 北大核心 2005年第3期31-38,共8页 Operations Research Transactions
基金 This research is supported by the National Natural Science Foundation of China(69903012, 60216263) National 863 Project 2003AA148040the Educational Science Foundation of Chongqing, Chongqing of China (KJ051307)
关键词 运筹学 极大Η-单调映象 模糊集值映象 收敛性 近似点算法 变分包含 扰动 混合 Hilbert空间 预解算子 单调映象 迭代序列 Operation research, variational inclusion, maximal ~}-monotone mapping, resolvent operator, fuzzy set-valued mapping, convergence
  • 相关文献

参考文献1

二级参考文献8

  • 1丁协平,J Math Anal Appl,1997年,210卷,1期,88页
  • 2Zeng L,J Math Anal Appl,1996年,201卷,1期,180页
  • 3丁协平,J Optim Theory Appl,1996年,88卷,1期,107页
  • 4丁协平,Indian J Pure Appl Math,1994年,25卷,10期,1115页
  • 5丁协平,J Math Anal Appl,1993年,173卷,2期,577页
  • 6Harker P T,Math Program,1990年,48卷,161页
  • 7Fang S C,J Optim Theory Appl,1982年,38卷,2期,363页
  • 8Chan D,Math Oper Res,1982年,7卷,2期,211页

共引文献9

同被引文献43

  • 1金茂明.含H-单调映象的完全广义非线性变分包含[J].纯粹数学与应用数学,2005,21(4):329-334. 被引量:2
  • 2DING X P,LUO C L Perturbed Proximal Point Algorithms for Generalized Quasi-Variational-Like Inclusions[J].J.Comput.Appl.Math.,2000,210:153-165.
  • 3HUANG N J,FANG Y P.A New Class of General Variational Inclusions Involving maximal η-Monotone Mappings[J].Publ.Math.Debrecen,2003,62(1-2):83-98.
  • 4FANG Y P,HUANG N J.H-Monotone Operator and Resolvent Operator Technique for Variational Inclusions[J].Appl.Math.Comput.,2003,145:795-803.
  • 5FANG Y P,HUANG N J,THOMPSON H B.A New System of Variational Inclusions with (H,η)-Monotone Operators in Hilbert Spaces[J].Computers Math.Applic.,2005,49:365-374.
  • 6VERMA R U.A-Monotonicity and Applications to Nonlinear Variational Inclusions[J].J.of AppL Math.and Stochastic AnaL,2004,17(2):193-195.
  • 7ZHANG Q B.Generalized Implicit Variational-Like Inclusion Problems Involving G-ηmonotone Mappings[J].AppL Math.Lett.,2007,20:216-221.
  • 8NADLER S B.Multivalued Contraction Mappings[J].Pacific J.Math.,1969,30.475-488.
  • 9AGARWAL R P,HUANG N J,CHO Y J.Generalized Nonlinear Mixed Implicit Qusai-Variational Inclusions[J].Appl.Math.Lett.,2000,13(6):19-24.
  • 10LI H G.Iterative Algorithm for A New Class of Generalized Nonlinear Fuzzy Set-Valude Variational Inclusions Involving (H,η)-Monotone Mappings[J].Advances in Nonl.Vari.Ineq.,2007,10(1):89-100.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部