期刊文献+

对一种基于椭圆曲线加密体制的安全性分析

Security Analysis of an Elliptic-Curve Based Encryption Scheme
下载PDF
导出
摘要 本文对一种椭圆曲线环上的陷门离散对数加密体制的安全性进行分析,指出它存在的安全缺陷,攻击者通过选择适当的明文加密,在得到相应的解密明文后,能够分解模数,从而成功地攻击此加密体制,因此该体制不能抵抗选择密文攻击。 We provide security analysis of a trapdoor discrete logarithm encryption scheme in elliptic curve ring proposed by Paillier, and point out the security flaws of it. The attacker can choose a proper plalntext to be encrypted, after getting the decrypted plaintext, he can factorize the modulus, and attack the encryptlon scheme successively, so this encryption scheme can not withstand chosen ciphertext attack.
出处 《计算机科学》 CSCD 北大核心 2005年第9期68-69,共2页 Computer Science
基金 国家自然科学重点基金(69931010) 国家"863"基金(2002AA143021) 国家通信保密基金(J 6410130)
关键词 椭圆曲线 加密体制 安全性分析 密码分析 Elliptic curve cryptogmphic scheme, Security analysis, Chosen ciphertext attack, Modulus factorization
  • 相关文献

参考文献9

  • 1Diffie W, Hellman M. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644~654
  • 2Rivest R, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems[A]. CACM, 1978, 21 (2): 120~126
  • 3Koyama K, Maurer U, Okamoto T, Vanstone S. New Public Key Schemes based on Elliptic Curves over the ring Zn [A]. In: Advances in Cryptology, Proc. of Crypto' 91, LNCS 576 [C], Springer-Verlag, 1992. 252~266
  • 4Pallier P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[A]. Advances in Cryptology-EUROCRYPT' 99, LNCS 1592[C], Springer-Verlag, 1999. 223~238
  • 5Catalano D, Gennaro R, Graham N H. The bit security of Paillier's encryption scheme and its applications[A]. Advances in Cryptology- EUROCRYPTO'01, LNCS 2045[C], Springer-Verlag, 2001. 229~243
  • 6Paillier P. Trapdooring Discrete Logarithms on Elliptic Curves over Rings[A]. Advances in Cryptology- ASIACRYPT 2000, LNCS 1976[C], Springer-Verlag, 2000. 573~584
  • 7Okamoto T, Uchiyama S. A new public key cryptosystem as secure as factoring[A]. Advances in Cryptology-EUROCRYPTO' 98[C],LNCS 1043, 1998. 309~318
  • 8Semaev I A. Evaluation of Discrete Logarithms in a Group of p Torsion Points of an Elliptic Curvein Characteristic p[J]. Math. Comp. , 1998,67:353~356
  • 9Silverman J H. The Arithmetic of Elliptic Curves[M]. SpringerVerlag, GTM 106, 1986

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部