摘要
软间隔支持向量机(SVM)分类算法是目前最具有代表性的模式分类算法之一,它在应用中的一个主要困难是确定控制参数C。提出一种新的软间隔SVM分类算法,通过松弛变量改变约束条件,允许数据点进入分离区域但不越过分类超平面,从而避免了参数C的确定问题。计算机实验和故障诊断实例表明,基于新算法的SVM分类器有较高的分类准确性和较好的泛化性能,能够实际应用于模式分类。
Vapnik's support vector machine (SVM) based soft-margin classifier is one of the most popular pattern classification models in use. The main difficult work in this SVM classifier is to determine the regulation parameter C. A proposes a new soft-margin SVM classification algorithm was proposed, which could avoid the design problem of parameter C. The main idea of the new classification algorithm is to permit data-points located in the separated area but not cross the hyper-plane through modifying the restriction conditions with slack variables. The simulation examples and fault diagnosis results show that the new algorithm can make SVM classifier have good generalization performance.
出处
《计算机工程与设计》
CSCD
北大核心
2005年第9期2316-2318,共3页
Computer Engineering and Design
基金
江苏省高校自然科学基金项目(04KJD510018)
连云港市科技发展基金项目(GY200401)
关键词
支持向量机
分类算法
故障诊断
泛化
软间隔
support vector machine
classification algorithm
fault diagnosis
generalization
soft-margin