期刊文献+

一种新的软间隔支持向量机分类算法 被引量:7

New support vector machine based classification algorithm and its application
下载PDF
导出
摘要 软间隔支持向量机(SVM)分类算法是目前最具有代表性的模式分类算法之一,它在应用中的一个主要困难是确定控制参数C。提出一种新的软间隔SVM分类算法,通过松弛变量改变约束条件,允许数据点进入分离区域但不越过分类超平面,从而避免了参数C的确定问题。计算机实验和故障诊断实例表明,基于新算法的SVM分类器有较高的分类准确性和较好的泛化性能,能够实际应用于模式分类。 Vapnik's support vector machine (SVM) based soft-margin classifier is one of the most popular pattern classification models in use. The main difficult work in this SVM classifier is to determine the regulation parameter C. A proposes a new soft-margin SVM classification algorithm was proposed, which could avoid the design problem of parameter C. The main idea of the new classification algorithm is to permit data-points located in the separated area but not cross the hyper-plane through modifying the restriction conditions with slack variables. The simulation examples and fault diagnosis results show that the new algorithm can make SVM classifier have good generalization performance.
作者 徐启华 杨瑞
出处 《计算机工程与设计》 CSCD 北大核心 2005年第9期2316-2318,共3页 Computer Engineering and Design
基金 江苏省高校自然科学基金项目(04KJD510018) 连云港市科技发展基金项目(GY200401)
关键词 支持向量机 分类算法 故障诊断 泛化 软间隔 support vector machine classification algorithm fault diagnosis generalization soft-margin
  • 相关文献

参考文献11

二级参考文献97

  • 1张周锁 李凌均 何正嘉.基于支持向量机的多故障分类器研究[A].陈进.2002年全国振动工程技术及应用学术会议论文集[C].上海:上海高等教育出版社,2002.149~154.
  • 2[1]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1995.
  • 3[2]Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning,1995,20:273-297.
  • 4[4]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
  • 5[5]Osuna E, Freund R, Girosi F. Training Support Vector Machines: An Application to Face Detection[A]. Proceedings of IEEE Conference on CVPR'97[C].Puerto Rico,1997.130-136.
  • 6[6]Joachims T. Making Large-Scale SVM Learning Practical[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999.
  • 7[7]Platt J C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999.185-208.
  • 8[8]Keerthi S S. Improvements to Platt's SMO Algorithm for SVM Classifier Design[J].Neural Computaion,2001,13(3):637-649.
  • 9[9]Chih Wei Hsu, Chih Jen Lin.A Simple Decomposition Method for Support Vector Machines[J]. Machine Learning, 2002,46 (1):291-314 .
  • 10[10]Jain Xiong Dong, Ching Y S, Adam K. A Fast SVM Training Algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2003,17(3):367-384.

共引文献403

同被引文献48

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部