期刊文献+

多时延解相关准则下的非平稳信号在线盲分离

On-line blind source separation of non-stationary signals by multiple time-delayed decorrelation rule
下载PDF
导出
摘要 利用一种基于多时延解相关准则的代价函数和自然梯度原则,分别推导出非平稳信号在瞬态线性混合及卷积混合情况下的在线盲分离算法,仅通过对有限个时延样本的相关矩阵进行Frobenius范数最小化运算得到分离矩阵,计算工作量小,无需对样本进行分块处理,可实现对信号的连续跟踪操作。仿真结果表明算法分离精度高,分离过程平稳,在任意混合情况下均能获得良好的分离性能。 An on-line blind source separation algorithm of non-stationary mixed signals is presented. The algorithm uses the multiple time-delayed decorrelation and natttral gradient rule to obtain the stationary point of the cost function, only a small number of observed samples is needed to minimize the Frobenius norm of the correlation matrices, so the computing cost is low and continuous separation calculation could be realized by on-line operation. Simulations show that the algorithm can get high separation performance for both non-stationary temporary and convolved mixing signals,
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第9期1528-1531,1548,共5页 Systems Engineering and Electronics
关键词 盲分离 非平稳信号 自然梯度 代价函数 blind source separation non- stationary signal natural gradient cost function
  • 相关文献

参考文献9

  • 1Choi S, Cichocki A. Blind separation of nonstationary and temporally correlated sources from noisy mixtures [J]. Neural Networks for Signal Processing, 2000, 1(11 - 13): 405 - 414.
  • 2Matsuoka K, Kawamoto M. A neural net for blind separation of nonstationary signal sources[A]. IEEE International Conf. on Neural Networks[C]. 1994, 221-226.
  • 3Kawamoto M, Matsuoka K, Ohnishi N. A method of blind separation for nonvolved non-stationary signals [J]. Neurocomputing,1998, 22: 157- 171.
  • 4Robert A, Sholo A, Shoji M, et al. Time domain blind source separation of non-stationary convolved signals by utilizing geometric beamforming[A]. Proc. of the 12th IEEE Workshop on Neural Networks for Signal Processing[C]. 2002, 445 -454.
  • 5Robert A, Herbert B. On-line time domain blind source separation of nonstationary convolved signals[A]. Proc. of Int. Symp. on independent component analysis and blind signal separation(ICA) [C].2003. 1- 6.
  • 6张安清,邱天爽,章新华.扩展联合对角化法的水声信号盲分离技术[J].系统工程与电子技术,2003,25(9):1058-1060. 被引量:8
  • 7Wu Hsiao-Chun, Principe J C. A unifying criterion for blind source separation and decorrelation: simultaneous diagonalization of correlation matrices[A]. Proc. of the IEEE workshop on neural networks for signal processing[C]. 1997. 496-505.
  • 8Amari S. Natural gradient works efficiently in learning[J]. Neural Computing, 1998. 10(2): 251-276.
  • 9Choi S, Cichocki A, Amari S. Equivariant nonstationary source separation[J]. Neural Networks, 2002, 15: 121-130.

二级参考文献5

  • 1Misturu Kawamoto, et al. A Method of Blind Separation for Convolved Non-Stationary Signals [ J ]. Elsevier Neurocomputing, 1998, 22 : 157 -171.
  • 2Bell A J, Sejnowsji T.J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6).
  • 3Tugnait Jitendra K. Adaptive Blind Separation of Convolutive Mixtures of Independent Linear Signals [ J ]. Elsevier Signal Processing , 1999,73 :139- 152.
  • 4Cardoso J F. Blind Beamformlng for Non-Gaussian Signals[J]. IEE-Processings-F, 1993,140(6) :362 - 370.
  • 5刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576. 被引量:63

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部