期刊文献+

基于FP-tree和支持度数组的最大频繁项集挖掘算法 被引量:2

Efficient mining maximal frequent itemsets by using FP-tree and support array
下载PDF
导出
摘要 提出了一个基于频繁模式树即FP-tree和支持度数组相结合的最大频繁项集挖掘算法,首先建立FP-tree,同时建立支持度数组,然后在此基础上建立最大频繁项集树MAXFP-tree,MAXFP-tree中包含了所有最大频繁项集,缩小了搜索空间,提高了算法的效率。算法分析和实验表明,该算法对稠密型数据集和稀疏型数据集均适用,并且特别适于挖掘具有长频繁项集的数据集。 An efficient algorithm based on FP-tree and support array for mining maximal frequent iternsets is proposed. At first the FP-tree and the support array are created at the same time. Then a maximal frequent itemsets tree- MAXFP-tree is built up to store all the maximal frequent itemsets. Therefore, it can reduce the search space and improve the efficiency of the algorithm. The results of experiment show the algorithm can be applied to both dense datasets and sparse datasets and it is especially effective for mining the datasets with long frequent itemsets.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第9期1631-1635,共5页 Systems Engineering and Electronics
基金 国家973计划基础研究发展基金(G1999032701) 江苏省自然科学基金(BK2002091)资助课题
关键词 数据挖掘 FP-TREE MAXFP-tree 支持度数组 最大频繁项集 data mining FP-tree MAXFP-tree support array maximal frequent itemsets
  • 相关文献

参考文献9

  • 1Agrawal R, Imielinski T, Swami A N. Mining association rules between sets of items in large databases[A]. In P. Buneman and S.Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data[C]. SIGMOD Record,ACMPress, 1993, 22(2): 207- 216.
  • 2叶飞跃,王建东,庄毅,吕宗磊.一种挖掘频繁模式的数据库划分新方法[J].系统工程与电子技术,2004,26(11):1666-1668. 被引量:3
  • 3Hah J, Pei J, Yin Y. Mining frequent patterns without candidate generation: a frequent-pattern tree approach mining frequent patterns without candidate generation[J]. Data Mining and Knowledge Discovery ,2004,8, 53 - 87.
  • 4Bayardo R J. Efficiently mining long patterns from databases[A].SIGMOD' 98 [C]. Seattle, Washington, 1998,85 - 93.
  • 5Gouda K, Zaki M J. Efficiently mining maximal frequent itemsets[A]. 1st IEEE International Conference on Data Mining (ICDM)[C]. San Jose, 2001,163-170.
  • 6Han Jiawei, Micheline Kamber . Data mining: concepts and techniques[M]. morgan Kaufmann , 2001.
  • 7朱玉全,孙志挥,季小俊.基于频繁模式树的关联规则增量式更新算法[J].计算机学报,2003,26(1):91-96. 被引量:80
  • 8UCI Machine Learning Repository. http:∥www. ics. uci. edu/~mlearn /MLSummary. html.
  • 9.[EB/OL].http:∥www. almaden. ibm. com/software/quest/Resources/index. shtml,.

二级参考文献13

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 2[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 3[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 4[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 5[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 6[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 7[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194
  • 8[10]Han J, Jian P. Mining access patterns efficiently from web logs. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'00), Kyoto, Japan,2000. 396~407
  • 9[11]Agrawal R, Srikant R. Mining sequential pattern. In: Proceedings of the 11th International Conference on Data Engineering, Taipei, 1995. 3~14
  • 10Agrawal R,Srikant R. Fast algorithms for mining association rules[C]. VLDB, 1994. 487-499.

共引文献81

同被引文献22

  • 1叶飞跃.基于自适应哈希链的分布式频繁模式挖掘算法[J].系统工程与电子技术,2005,27(3):560-564. 被引量:2
  • 2徐维祥,苏晓军.基于频繁模式树的一种关联规则挖掘算法及其在铁路隧道安全管理中的应用[J].中国安全科学学报,2007,17(3):25-32. 被引量:9
  • 3Dong G, Pei J. Sequence data mining[M]. NewYork : Springer, 2007.
  • 4Han J, Cheng H, Xin D, et al. Frequent pattern mining: current status and future directions[J]. Data Mining and Knowledge Discovery, 2007, 15(1): 55- 86.
  • 5Agrawal R, Srikant R. Mining sequential patterns[C]//Proc. of the llth International Conference on Data Engineering, 1995: 3-14.
  • 6Pei J, Han J, Mortazavi-Asl B, et al. Mining sequential patterns by pattern growth : the PrefixSpan approach [J]. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(11):1424 - 1440.
  • 7Zaki M J. SPADE: an efficient algorithm for mining frequent se quences[J]. Machine Learning, 2001, 42 (1/2) : 31 - 60.
  • 8Yah X, Han J, Afshar R. CloSpan: mining closed sequential patterns in large databases[C]//Proc, of the 3rd SIAM International Conference on Data Mining, 2003 : 166 - 177.
  • 9Wang J, Han J, Li C. Frequent closed sequence mining without candidate maintenance[J]. IEEE Trans. on Knowledge and Data Engineering, 2007, 19(8) :1042-1056.
  • 10Yang G. Computational aspects of mining maximal frequent patterns[J]. Theoretical Computer Science, 2006, 362 (1 - 3) : 63 - 85.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部