期刊文献+

基于变精度模型的平分互测动态约简粗糙集知识发现方法研究 被引量:1

Rough set knowledge acquisition of“divide equally and examine each other”and“dynamic reduce”based on variable precision model
下载PDF
导出
摘要 普通粗糙集模型对数据噪音的高度敏感限制了其在工程实际中的应用,本文在变精度模型近似约简的基础上提出了数据全集随机平分互测法以提高数据的利用率。为克服数据集随机分割带来的约简值浮动变化的问题,本文提出了动态约简的方法筛选出最优约简,将此最优约简应用于数据全集生成最优规则。 Owing to the high sensitivity to noise data, the application of normal rough set model in engineering is restricted, this thesis put forward the method of “data set divided equally and examine each other”to improve data utilization ratie. In order to solve the problem of the fluctuation of reduction with the data set random division, this thesis bring forward the method of dynamic reduce to confirm the best reduction, and succeed in obtaining the optimum rule by applying the best reduction to data set.
出处 《西安科技大学学报》 CAS 北大核心 2005年第3期383-387,共5页 Journal of Xi’an University of Science and Technology
基金 陕西省自然科学基金(2002J06)
关键词 变精度模型 平分互测 动态约简 粗糙集 variable precision model divide equally and examine each other dynamic reduce rough set
  • 相关文献

参考文献2

二级参考文献6

  • 1Chan C C,Inform Sci,1998年,107卷,169页
  • 2Lin T Y,Proc IMACS Multiconference,1996年,942页
  • 3Yao Y Y,Intelligent Automation and Soft Computing,1996年,2卷,2期,103页
  • 4Hu X,学位论文,1995年
  • 5Shan N,Computational Intelligence,1995年,11卷,357页
  • 6Lin T Y,Methodologies for Intelligent Systems,1994年,65页

共引文献202

同被引文献24

  • 1张贤勇,莫智文.变精度粗糙集[J].模式识别与人工智能,2004,17(2):151-155. 被引量:43
  • 2Pawlak Z. Rough sets: theoretical aspects of reasoning about data [ M ]. Dordrecht : Kluwer Academic Publisher, 1991.
  • 3Ziarko W. Variable precision rough set model [ J ]. Journal of Com- puter and System Sciences,1993,46(93) :39-59.
  • 4Li Tianrui, Ruan Da, Geert W, et al. A rough sets based characteristic relation approach for dynamic attribute generalization in data mining [ J]. Knowledge-Based Systems,2007,20(5 ) :485-494.
  • 5Hu Qinghua, Yu Daren, Liu Jinfu, et al. Neighborhood rough set based heterogeneous feature subset selection [ J ]. Information Sciences, 2008,178 ( 18 ) : 3577- 3594.
  • 6Yang Xibei, Zhang Ming, Dou Huili, et al. Neighborhood systems- based rough sets in incomplete information system[ J]. Knowledge- Based Systems,2011,24(6) :858-867.
  • 7Zhang Junbo, Li Tianrui, Chen Hongmei. Composite rough sets [ M ]// Artificial Intelligence and Computational Intelligence. Berlin: Sprin- zer.2012 : 150-159.
  • 8Pawlak Z, Skowron A. Rough sets: some extensions [ J]. Information Sciences,2007,177( 1 ) :28-40.
  • 9Chen Hongmei, Li Tianrui, Zhang Junbo, et al. Probabilistic composite rough set and attribute reduction [ M]//Knowledge Engineering and Management. Berlin : Springer, 2014 : 189-197.
  • 10] Wang Jiayang, Zhou Jie. Research of reduct features in the variable precision rough set model[ J]. Neruocomputing ,2009,72(2) :2643- 2648.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部