期刊文献+

AGV视觉导航中Kalman滤波最优控制器的设计 被引量:2

Optimal Controller Design of Kalman-Filtering in Visual Navigation for Automatic Guided Vehicle
下载PDF
导出
摘要 为解决电子地图辅助视觉导航AGV的控制精度问题,将AGV中基于视觉的位置信号离散化后得到AGV中心轴的偏距和偏角.作为滤波器的输入信号,用U-D分解的Kalman滤波可以有效地消除在AGV导航中存在的白噪声.其中在时域中采用递推算法为最优控制输入稳定的状态量,并保证数值的稳定性,使系统的鲁棒性好;再经过状态反馈最优控制系统得到最优的控制输出.结果表明,用此方法设计的控制器稳定性强,抗干扰能力强,AGV在该控制器的作用下,转弯半径为5m时,方向偏差在±0.5°内变化,侧向偏差控制在±4mm之内.该控制器适应于工业环境中强电气噪声的环境,对直线和曲线路径有很好的跟踪效果,用于自动导向车辆等智能运输设备,符合工业应用的要求. In order to solve the problem of accuracy control of automatic guided vehicle(AGV) equipped with visual navigation system, the vision-based continuous state equation was turned into a discrete state equation to obtain distance deviation and angular deviation from the center axis, both of which were used as input signal of the filters. Then the U-D decomposed Kalman-filtering could effectively eliminate the white noise existing in the AGV navigation system. Recursive algorithm in time domain was adopted to provide steady state variables for the optimal controller and guarantee the computational stability to achieve better system robustness. Optimal output of the optimal control system could be obtained by status feedback. The results indicate that the robustness and noise immunity of the controller designed with the proposed method are strong. By the proposed controller, the orientation deviation of AGV ranges between ±0.5°and the lateral deviation ranges between ±4 mm, while the swerve radius is 5 m. Consequently the controller works properly under the industrial circumstances with large electric noise and can trace the linear and curve paths effectively. It is used in intelligent transportation equipment such as automatic guided vehicle and can meet the requirement of industrial application.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2005年第10期854-858,共5页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(60472977 50337020 60301008).
关键词 自动导引车 KALMAN滤波 最优控制器 U-D分解 automatic guided vehicle Kalman-filtering optimal controller U-D decomposition
  • 相关文献

参考文献9

  • 1Bierman G J. Measurement updating using the U-D factorization[J]. Automatica, 1976,12(4):375-382.
  • 2Knight J. Towards Fully Autonomous Visual Navigation [ D ].Department of Engineering Science, University of Oxford,Britain, 2002.
  • 3Tsugawa Sadayuki, Mori Hiraaki, Kato Shin. A lateral control algorithm for vision-based vehicles with a moving target in the field of view[ A]. In: Proceedings of the IEEE International Conference on Intelligent Vehicles [ C ]. Stuttgart,Germany, 1998.41-45.
  • 4Marins J L, Yun Xiaoping. An extended Kalman filter for quaternion-based orientation estimation using MARG sensors[ A ]. In : Proceedings of the IEEE International Conferenceon Intelligent Robots and Systems [ C ]. Hawaii, USA, 2001.2 003-2 011.
  • 5Southall J B. The Development and Evaluation of Computer Vision Algorithms for the Control of an Autonomous Horticultural Vehicle [ D ]. Department of Computer Science, University of London, Britain, 1999.
  • 6王荣本,李兵,徐友春,李斌.基于视觉的智能车辆自主导航最优控制器设计[J].汽车工程,2001,23(2):97-100. 被引量:33
  • 7Tow Yong Teo, Joo Siong Chai, Wan Liyao. Design of a positioning system for AGV navigation [ A ]. In : Proceedings of the 7th International Conference on Control, Automation,Robotics and Vision[ C]. Singapore, 2002. 637-642.
  • 8Shoval S, Zeitoun I, Lenz E. Implementation of a Kalman filter in positioning for autonomous vehicles and its sensitivity to the process parameters [ J ]. International Journal of Advanced Manufacturing Technology, 1997,13 ( 10 ) : 738-746.
  • 9Carelli R, Soria C, Nasisi O, et al. Stable AGV corridor navigation with fused vision-based control signals [ A ]. In:Proceedings of the 2002 28th Annual Conference of the IEEE Industrial Electronics Society [ C ]. Sevilla, Spain, 2002.2 433-2 438.

二级参考文献3

共引文献32

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部