期刊文献+

微生物在植物铁营养中的潜在作用 被引量:13

Latent function of microorganisms on plant iron acquisition
下载PDF
导出
摘要 根据近十多年来相关研究成果讨论了土壤微生物在植物根系吸收铁中可能的作用机理。这种机理可能包括缺铁植物根系分泌小分子有机化合物,如酚类和黄素类等化合物,这些化合物作为抑菌剂和(或)作为微生物生长的碳源物质来影响根际(Rhizosphere)微生物的群落结构,并在植物根际诱导形成特异性微生物种群,此类特异性微生物转而通过分泌高铁载体(Siderophore),增加土壤中铁的生物有效性,从而提高了根系对铁的吸收。此外,与植物根系共生的一些微生物也会改善植物的铁营养,这种作用可能包括:根瘤菌(Rhizobium)的结瘤作用,增强植物耐缺铁的生理响应;根系感染的菌根真菌通过增加植物根系的养分吸收面积和分泌对铁具有螯合作用的物质来改善植物的铁营养。本文在讨论这种可能的微生物作用机制的基础上,指出今后的研究方向和有待解决的问题。 Iron deficiency in plants is a worldwide agricultural problem. It has been proved that soil microorganisms have a beneficial effect on the iron acquisition of some plants, but the underlying mechanism is still unclear. Based on last ten years' research results, possible mechanism on how the microorganisms favor plant iron acquisition was discussed in this review. Iron-deficiency-induced root exudates, such as phenolic and flavin compounds, acting as inhibitors and carbon sources, affected the architecture of microorganisms in the rhizosphere and induced a formation of a specified microorganism community. Those specified microorganisms in turn benefited the plant iron acquisition through the secretion of siderophore which could improve the bioavailability of iron in soil. In addition, the symbiosis between some microorganisms and plants could also improve plant iron nutrient status. The underlying processes may involve : the formation of riftzobium nodulation enhanced plant iron-deficient nutrient status through enlarging absorption area response, and mycorrhizal fungi infected root which improved the iron and excreting the materials which chelated iron of plant.
出处 《植物营养与肥料学报》 CAS CSCD 北大核心 2005年第5期688-695,共8页 Journal of Plant Nutrition and Fertilizers
基金 国家自然科学基金项目(40271065)资助
关键词 根系分泌物 根际 微生物 高铁载体 root exudates rhizosphere microorganism iron siderophore
  • 相关文献

参考文献56

  • 1Lindsay W L, Schwab, A P. The chemistry of iron in soils and its availability to plants[J], J. Plant Nutr., 1982, 7:135-147.
  • 2WHO. http://www.who.int/nut/ida[EB/OL]. 2001.
  • 3Romheld V, Marschner H. Mobilization of iron in the rhizosphere of different plant species[J]. Adv. In Plant Nutri., 1986, 2:155- 204.
  • 4Takahashi M, Nakanishi H, Kawaskai S et al. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianmine aminotransferase genes[J]. Nat. Biotechol., 2001, 19: 466-469.
  • 5Robinson N J, Procter C M, Connoly E L et al. A ferric-chelate reduactase for iron uptake from soils[J]. Nature, 1999, 397: 694- 697.
  • 6Masalha J, Kosegarten H, Elmacio et al. The central role of microbial activity for iron acquisition in maize and sunflower[J]. Bio. Fertile. Soil, 2000, 30: 433-439.
  • 7Rroco E, Kosegarten H, Harizaj F et al. The importance of soil microbial activity for the supply of iron to sorghum and rape[J]. Euro. J. Agronomy, 2003, 19: 487-493.
  • 8Romheld V, Marschner H. Genotypical difference among graminaceous species in release of phytosiderophores and uptake of iron-phytosiderophores[J]. Plant Soil, 1990, 123:147-153.
  • 9Susin S, Abian J, Peleato M L et al. Flavin excretion from roots of iron-deficient sugar beet \%(Beta vulgaris\% L.) [J]. Planta, 1994, 193: 514-519.
  • 10Welkie G W. Taxonmic distribution of dicotyledonous species capable of root excretion of riboflavin under iron deficiency[J]. J. Plant Nutr., 2000, 23 (11-12): 1819-1831.

同被引文献260

引证文献13

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部