期刊文献+

最小二乘Littlewood-Paley小波支持向量机 被引量:14

Least Square Littlewood-Paley Wavelet Support Vector Machine
下载PDF
导出
摘要 基于小波分解理论和支持向量机核函数的条件,提出了一种多维允许支持向量核函数———L it-tlewood-Paley小波核函数.该核函数不仅具有平移正交性,而且可以以其正交性逼近二次可积空间上的任意曲线,从而提升了支持向量机的泛化性能.在L ittlewood-Paley小波函数作为支持向量核函数的基础上,提出了最小二乘L ittlewood-Paley小波支持向量机(LS-LPW SVM).实验结果表明,LS-LPW SVM在同等条件下比最小二乘支持向量机的学习精度要高,因而更适用于复杂函数的学习问题.* Based on the wavelet decomposition theory and conditions of the support vector kernel function, a multivariable support vector kernel function is proposed, i.e. Littlewood-Paley wavelet kernel function for SVM( Support Vector Machine). This function is a kind of orthonormal function, and it can approximate almost any curve in quadratic continuous integral space, thus it enhances the generalization ability of the SVM. Using Littlewood-Paley wavelet function as the support vector kernel function, the Least Square Littlewood-Paley Wavelet Support Vector Machine (LS-LPWSVM) is proposed. Experiment results show that, compared with least square support vector machine under the same conditions, the learning precision is improved by LS-LPWSVM. So, it will be more suitable for learning complicated functions.
出处 《信息与控制》 CSCD 北大核心 2005年第5期604-609,共6页 Information and Control
关键词 支持向量机 核函数 支持向量核函数 Littlewood—Paley小波 LS-LPWSVM support vector maclfine (SVM) kernel function support vector kernel function Littlewood-Paley wavelet LS-LPWSVM
  • 相关文献

参考文献11

  • 1Vapnik V N. The Nature of Statistical Learning Theory [ M ].New York: Springer, 1995. 1~175.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 3Burges C J. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 955 ~974.
  • 4Bernhard S, Sung K K. Comparing support vector machines with Gaussian kernels to radical basis function classifiers [ J]. IEEETransactions on Signal Processing, 1997, 45 ( 11 ): 2758 ~2765.
  • 5Osuna E, Ereund R, Girosi F. Training support vector machines:an application to face detection [ A]. Proceedings of the 1997IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C]. Los Alamitos, CA, USA: IEEE, 1997.130 ~ 136.
  • 6Mercer J. Function of positive and negative type and their connection with the theory of integral equations [ J ]. Philosophical Transactions of the Royal Society of London: A, 1909, (209):415 ~446.
  • 7Stein E M. Topics in Harmonic Analysis Related to the Littlewood-Paley Theory [ M]. Princeton, New Jersey: Princeton University Press and the University of Tokyo Press, 1970.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letter, 1999, 9(3):293 ~ 300.
  • 9Burges C J C. Geometry and invariance in kernel based methods [ A ]. Advance in Kernel Methods - Support Vector Learning [M]. Cambridge, MA: MIT Press, 1999. 89~116.
  • 10Smola A J, Scholkopf B, Muller K R. The connection between regularization operators and support vector kernels [ J ]. Neural Networks, 1998, 11(4): 637 ~649.

二级参考文献1

共引文献2271

同被引文献118

引证文献14

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部