期刊文献+

手写体汉字识别纯神经网络多分类器集成 被引量:2

Neural Networks Combined System for Handwritten Chinese Character Recognition
下载PDF
导出
摘要 多分类器集成是解决手写体汉字识别性能的重要方法之一,近年来受到了学术届的普遍关注。文章提出了一种基于单字单网的手写体汉字识别纯神经网络的多分类器集成方案,并通过实验证明该方案是行之有效的。 It is concerned commonly that the intuitionistic,compact method which combined some different classifiers to improve the recognition of HCCR.This paper proposes a scheme to HCCR,which is made up of pre_classifiers and model integrated,and both used neural networks.Experiments show that this method works and can classify large number of catalogs well.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第28期44-45,87,共3页 Computer Engineering and Applications
基金 国家自然科学基金(编号:60275005) 广东省自然科学基金(编号:011611)
关键词 手写体汉字识别 多分类器集成 神经网络 handwritten Chinese character recognition,multi classifers integrated,neural network
  • 相关文献

参考文献8

二级参考文献21

  • 1郝红卫,戴汝为.人机结合的集成方法及其在字符识别中的应用[J].模式识别与人工智能,1996,9(1):10-20. 被引量:14
  • 2ABHIJIT S P ROBERT B M.神经网络模式识别及其实现[M].北京:电子工业出版社,1999.115-119.
  • 3尤矢勇 谢云.模拟退火算法冷却进度表的参数选取[J].武汉大学学报·并行计算,1991,9.
  • 4尤矢勇 谢云.模拟退火算法试验性能分析[J].武汉大学学报·并行计算,1991,9.
  • 5谢云.模拟退火算法并行实现的若干策略[J].武汉大学学报·并行计算,1991,9.
  • 6金连文,博士学位论文,1996年
  • 7LI T F,International Journal of Pattern Recognition and Artificial Intelligence,1994年,8卷,5期,1241页
  • 8Chang H D,Pattern Recognition Lettrs,1994年,15卷,4期,403页
  • 9Huang Y S,Proceedings of the Third Internal Conference of Document Analysis and Recognition,1993年
  • 10Suen C Y,Pattern Recognit Lett,1993年,14卷,4期,303页

共引文献1325

同被引文献20

  • 1Liu C L. Classifier combination based on confidence transformation[J]. Pattern Recog, 2005, 38(1):11 - 28.
  • 2Smith S J, Bourgoin M O, Sims K, et al. Handwritten character classification using nearest neighbor in large databases [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994, 16(9): 915-919.
  • 3Arica N, Yarman-Vural F T. An overview of character recognition focused on off-line handwriting [J]. IEEE Trans on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2001, 31(2): 216-233.
  • 4Kimura F, Takashina K, Tsuruoka S, et al. Modified quadratic discriminant functions and its application to Chinese character recognition [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1987, 9(1): 149-153.
  • 5Rahman A F R, Fairhurst M C. Multiple classifier decision combination strategies for character recognition: A review[J]. International Journal on Document Analysis and Recognition, 2003, 5(4): 166-194.
  • 6Lin X F, Ding X Q, Chen M, et al. Adaptive confidence transform based classifier combination for Chinese eharaeter recognition [J]. Pattern Recognition Letters, 1998, 19(10): 975 - 988.
  • 7Sirlantzis K, Hoque S, Fairhurst M C. Trainable multiple classifier schemes for handwritten character recognition [J]. Lecture Notes in Computer Science, 2002, 2364 : 169 - 178.
  • 8Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting[J]. The Annals of Statistics, 2000, 28(2) : 337 - 407.
  • 9Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999, 37(3) : 297 - 336.
  • 10Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences, 1997, 55(1): 119 - 139.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部