期刊文献+

一种分数余弦变换及应用 被引量:1

New fractional cosine transform and its application
下载PDF
导出
摘要 定义了一种分数余弦变换的形式,用前两个整数阶余弦变换的线性叠加构造分数余弦变换。然后基于特征值及特征向量计算的方法将其扩展成K周期形式,推导了两种计算分数余弦变换的算法,并且讨论了与Pei定义的分数余弦变换之间的关系。最后探讨了其在音频信号数字水印中的应用。 A new Fractional Cosine Transform was proposed. It was a weighted combination of the first two integer-order cosine transforms of the original signal, and eigenvalues which have a periodicity of two it has the same eigenvectors as the cosine transform's, but the different When the periodicity from two to K was extended, K period fractional cosine transform was obtained. Two algorithms were deduced and the advantages of the new fractional cosine transform were analyzed. At last, the application in digital watermark of aural signals was discussed.
出处 《通信学报》 EI CSCD 北大核心 2005年第9期111-115,122,共6页 Journal on Communications
基金 湖南省自然科学基金资助项目(04JJ40047) 湖南省教育厅基金资助项目(03C467)
关键词 信号与信息处理 分数余弦变换 特征值 特征向量 数字水印 signal and information processing fractional cosine transform eigenvalue eigenvector digital watermark
  • 相关文献

参考文献9

  • 1NAMIAS V. The fractional order Fourier transform and its application to quantum mechanics[J]. J Inst Maths Applics, 1980, 25: 241-265.
  • 2DORSCH R G, LOHMANN A W, BITRAN Y. Chirp filtering in the fractional Fourier domain[J]. Applied Optics, 1994, 33(32): 7599-7602.
  • 3OZAKTAS H M, MENDLOVIC D. Fractional Fourier optics[J].Optical Society of American, 1995, 12(4): 743-751.
  • 4SHIH C C. Fractionalization of Fourier transforms[J]. Optics Communications, 1995, 118(5): 495-498.
  • 5LIU S T, ZHANG J D, ZHANG Y. Properties of fractionalization of a Fourier transform[J]. Optics Communications, 1997, 113(1): 50-54.
  • 6LOHMANN A W, MENDLOVIC D, ZALEVSKY Z. Some important fractional transforms for signal processing[J]. Optics Communications,1996, 125(4): 18-20.
  • 7PEI S C, DING J J. Fractional cosine sine and Hartley transforms[J].IEEE Transactions on Signal Processing, 2002, 50(7): 1661-1680.
  • 8PEI S C, YEH M H. The discrete fractional cosine and sine transforms[J]. IEEE Transactions on Signal Processing, 2001, 49(6):1198-1207.
  • 9王秋生,孙圣和.一种在数字音频信号中嵌入水印的新算法[J].声学学报,2001,26(5):464-467. 被引量:58

二级参考文献2

共引文献57

同被引文献8

  • 1J W Picone. Signal Modeling Techniques in Speech Recognition [C]. Proc. IEEE, 1993, 81(9) :1215 -1247.
  • 2R G Dorsch, A W Lohmann, Bitran D Mendlovic. Chirp Filtering in the Fractional Fourier Domain [ J ]. Appl Opt. 1994,33 : 7599 - 7602.
  • 3H M Ozaktas, D Mendlovic. Fractional Fourier Optics[J]. J. Opt. Soc. Am. A. 1995, 12:743-751.
  • 4D Mendlovic, H M Ozaktas. Fractional Fourier Transformations and Their Optical Implementation: I[J]. J. Opt. Soc. Amer. A. 1993,10:1875 - 1881.
  • 5V Namias. The Fractional Order Fourier Transform and Its Application to Quantum Mechanics [ J ]. J. Inst. Math, 1980,25 : 241 - 265.
  • 6P Somervuo, A Harma, S Fagerlund. Parametric Representations of Bird Sounds for Automatic Species Recognition [ J ]. IEEE Transactions on audio, speech, and language processing, 2006,14 (6) :2252 - 2263.
  • 7Lu Yu, Lenan Wu. Comments on A Separable Low Complexity 2D HMM with Application to Face Recognition[J]. Pattern Analysis and Machine Intelligence. IEEE Transactions on audio, speech, and language processing. 2007, 29(2) :368 -368.
  • 8赵力.语音信号处理[M].北京:机械工业出版社,2004,236-253.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部